A pontiff set upon by angels

Watching Victor Kossakovsky’s Aquarela for New Scientist, 15 January 2020.

WINTER in southern Siberia. By a long-winded, painstaking method involving levers, ropes and a fair amount of cursing, vehicles that have fallen through the thawing ice of Lake Baikal can be hauled back onto the surface.

The crew working on Aquarela were filming one such operation when an SUV shot past in a shower of ice, then plunged nose-first into the freezing water, killing one of its occupants.

There is nothing exploitative about the footage that, after much soul-searching, Russian film-maker Victor Kossakovsky used to front his poetic, narrative-less documentary about the power and weirdness of water. Locals and police slip and topple, hacking frantically at the ice, while the accident’s sole survivor stumbles about, frenzied with terror and getting in everyone’s way.

Kossakovsky is one of those rare documentary makers who still believes that the camera alone can capture truth. His expensive and time-consuming method of waiting, watching and witnessing the world is rarely supported by an industry obsessed with narratives and sound bites. Bravo, then, to Participant Media and the film’s many other backers, large and small, for Aquarela: the strangest, most powerful eco-documentary you are ever likely to see.

Captured at a staggering 96 frames per second, Aquarela‘s tracking shots, even in extreme close-up, are completely flicker-free. This makes them surreally present, in a way that demolishes scale and has you gripping the arms of your chair. Virtually no cinemas are equipped to screen such footage: this is a film made with an eye to posterity, and the plaudits that come with being a cinematic first.

Just as much study – and, no doubt, expense – has gone into the super-stabilisation of the camera used to capture the swells of a storm-tossed mid-Atlantic. If ever a present-day sequence could recreate the urban myth surrounding L’Arrivée d’un train en gare de La Ciotat, in which early audiences were convinced an on-screen train was going to drive into them and fled to the back of the cinema, it is a ride over one of Aquarela‘s impending waves.

Why recommend a film that no cinema chain can yet screen properly? Buying the Blu-Ray disc or watching it on a streaming service (we will tell you when it arrives in our Don’t Miss column) is likely to convey only a fraction of its magic. But that fragment is jaw-dropping. After so many eco-docs, with their predictable 5-second glimpses of calving icebergs, here, finally, is a film that lingers on the berg as it sinks and rises, turns and crumbles, until an ice fragment floats by that looks for all the world like a pontiff set upon by angels.

This is a film that makes even a placid ocean surface strange, as oblique light catches the ripples within each little wave. Those ripples, in such a harsh, angled, almost monochrome light, resemble the stress fractures you find in flint or bottle glass. As such, the water, for all its movement, looks like a weirdly animated mineral, and those ocean swells really do look like mountains – the cliche made vivid at last.

This isn’t a film about our relationship with water. From continent to continent, glacier to ocean, burst dam to waterfall, Aquarela is about water’s indifference to any relationship we might try to strike up with it. It is a most disconcerting film.

668 televisions (some of them broken)

Visiting the Nam June Paik exhibition at Tate Modern for New Scientist, 27 November 2019

A short drive out of Washington DC, in an anonymous industrial unit, there is an enormous storage space crammed to the brim with broken television sets, and rolling stack shelving piled with typewriters, sewing machines and crudely carved coyotes.

This is the archive of the estate of Nam June Paik, the man who predicted the internet, the Web, YouTube, MOOCs, and most other icons of the current information age; an artist who spent much of his time engineering, dismantling, reusing, swapping out components, replacing old technology with better technology, delivering what he could of his vision with the components available to him. Cathode ray tube televisions. Neon. Copper. FORTRAN punch cards. And a video synthesizer, designed with the Tokyo artist-engineer Shuya Abe in 1969. The signature psychedelic video effects of Top of the Pops and MTV began life here.

Paik was born in Seoul in 1932, during the Japanese occupation of Korea, and educated in Germany, where he met the composers Karl-Heinz Stockhausen and John Cage. A fascinating retrospective show currently at London’s Tate Modern celebrates his involvement with that loose confederacy of artist-anarchists known as Fluxus. (Yoko Ono was a patron. David Bowie and Laurie Anderson were hangers-on.)

Beneath Paik’s celebrated, and celebrity-stuffed concerts, openings and “happenings” — there’s what amounts — in the absence of Paik’s controlling intelligence (he died in 2006) — to a pile of junk. 668 televisions, some of them broken. A black box the size of a double refrigerator, containing the hardware to drive one of Paik’s massive “matrices”, Megatron/Matrix, an eight-channel, 215-screen video wall, in pieces now, a nightmare to catalogue, never mind reconstruct, stored in innumerable tea chests.

The trick for Saisha Grayson, the Smithsonian American Art Museum’s curator of time-based media, and Lynn Putney its associate registrar, is to distinguish the raw material of Paik’s work from the work itself. Then curators like Tate Modern’s Sook Kyung Lee must interpret that work for a new generation, using new technology. Because let’s face it: in the end, more or less everything Paik used to make his art will end up in the bin. Consumer electronics aren’t like a painter’s pigments, which can be analysed and copied, or like a sculptor’s marble, which can, at a pinch, be repaired.

“Through Paik’s estate we are getting advice and guidance about what the artist really intended to achieve,” Lee explains, “and then we are simulating those things with new technology.”

Paik’s video walls — the works by which he’s best remembered, are monstrously heavy and absurdly delicate. But the Tate has been able to recreate Paik’s Sistine Chapel for this show. Video projectors to fill a room with a blizzard of cultural and pop-cultural imagery from around the world — a visual melting pot reflective of Paik’s vision of a technological utopia, in which “telecommunication will become our springboard for new and surprising human endeavors.” The projectors are new but the feel of this recreated piece is not so very different to the 1994 original.

To stand here, bombarded by Bowie and Nixon and Mongolian throat singers and all the other flitting, flickering icons of Paik’s madcap future, is to remember all our hopes for the information age: “Video-telephones, fax machines, interactive two-way television… and many other variations of this kind of technology are going to turn the television set into an «expanded-media» telephone system with thousands of novel uses,” Paik enthused in 1974, “not only to serve our daily needs, but to enrich the quality of life itself.”

Worth losing sleep over

Watching Human Nature, directed by Adam Bolt, for New Scientist, 27 November 2019.

Mature and intelligent, Human Nature shows us how gene editing works, explores its implications and – in a field awash with alarmist rhetoric and cheap dystopianism – explains which concerns are worth losing sleep over.

This gripping documentary covers a lot of ground, but also works as a primer on CRISPR, the spectacular technology that enables us to cut and paste genetic information with something like the ease with which we manipulate text on a computer. Human Nature introduces us to key start-ups and projects that promise to predict, correct and maybe enhance the genetic destinies of individuals. It explores the fears this inspires, and asks whether they are reasonable. Its conclusions are cautious, well-argued and largely optimistic.

Writers Regina Sobel and Adam Bolt (who also directs) manage to tell this story through interviews. Key players in the field, put at their ease during hours of film-making, speak cogently to camera. There is no narration.

Ned Piyadarakorn’s graphics are ravishing and yet absurdly simple to grasp. They need to be, because this is an account hardly less complex than those in the best popular science books. As the film progressed, I began to suspect that the film-makers assume we aren’t idiots. This is so rare an experience that it took a while to sink in.

There are certain problems the film can’t get round, though. There are too many people in white coats moving specks from one Petri dish to another. It couldn’t be otherwise, given the technology involves coats, specks, Petri dishes and little else by way of props the general viewer can understand. That this is a source of cool amusement rather than irritation is largely due to the charisma of the film’s cast of researchers, ethicists, entrepreneurs, diagnosticians, their clients and people with conditions that could be helped by the technique, such as schoolboy David Sanchez, who has sickle-cell anaemia. We learn that researchers are running clinical trials using CRISPR to test a therapy for his condition.

Foundational researchers like Jennifer Doudna and Jill Banfield, Emmanuelle Charpentier and Fyodor Urnov provide star quality. Provocateurs like Stephen Hsu, a cheerful promoter of designer babies, and the longevity guru George Church are given room to explain why they aren’t nearly as crazy as some people assume.

Then the bioethicist Alta Charo makes the obvious but frequently ignored point that the Brave New World nightmare CRISPR is said to usher in is a very old and well-worn future indeed. Sterilisations, genocide and mass enslavement have been around a lot longer than CRISPR, she says, and if the new tech is politically abused, we will only have our ourselves to blame.

There is, of course, the possibility that CRISPR will let loose some irresistibly bad ideas. Consider the mutation in a gene called ADRB1, which allows us to get by on just 4 hours’ sleep a night. I would leap at the chance of a therapy that freed up my nights – but I wonder what would happen if everyone else followed suit. Would we all live richer, more fulfilled lives? Or would I need a letter from my doctor when I applied for a 16-hour factory shift?

The point, as Human Nature makes all too clear, is that the questions we should be asking about gene editing are only superficially about the technology. At heart, they are questions about ourselves and our values.

Now we use guns

Talking to Daniel Abraham and Ty Franck (better known as the sci-fi writer James S. A. Corey) for New Scientist, 20 November 2019

Daniel Abraham and Ty Franck began collaborating on their epic, violent, yet uncommonly humane space opera The Expanse in 2011 with the book Leviathan Wakes. The series of novels pits the all-too-human crew of an ice-hauler from Ceres against the studied realpolitik of a far-from-peaceful solar system. The ninth and final book is due out next year. Meanwhile, the TV series enters its fourth season, available on Amazon Prime from 13 December.

The Expanse began as a game, became a series of novels and ended up on television. Was it intended as a multimedia project?

Ty Franck Initially it was just a video game that didn’t work, then it evolved into a tabletop role-playing game.

Daniel Abraham And then books, and then a TV show. I think intention is a very bold word to use for any of this. It implies a certain level of cunning that I don’t think we actually have.

What inspired its complex plot?

TF I’m a big fan of pre-classical history. I pull a lot of weird Babylonian and Persian and Assyrian history into the mix. It’s funny how often people accuse you of critiquing current events. They’re like, ‘You are commenting on this elected politician!’ And I’m like, ‘No, that character is Nebuchadnezzar’.

How have the humans changed in your future? Or is their lack of change the point?

DA If you really want a post-human future, change humans so that they don’t use wealth to measure status. But then they wouldn’t be human any more. We are mean-spirited little monkeys, capable of moments of great grace and kindness, and that story is much more plausible to me and much more beautiful than any post-human tale.

TF I find that the books that I remember the longest, and the books that I’ve been most entertained by, are the ones where the characters are the most human, not the least human.

You’ve mentioned Alfred Bester’s 1959 novel The Stars My Destination as an influence…

TF Exactly, and there you have an anti-hero called Gully Foyle. Gully is everything that we fear to be true about ourselves. He’s venal, and weak, and cowardly, and stupid, and mean. Watching him survive and become something more is the reason we’re still talking about that book today.

You began The Expanse nine years ago. What would you have done differently knowing what we know now about the solar system?

DA We would have made Ceres less rocky. We imagined a mostly mineral dwarf planet, and then it turned out there’s a bunch of ice on it. But this sort of thing is inevitable. You start off as accurate as possible, and a few years later you sound like Jules Verne. That the effort to get things right is doomed doesn’t take away from its essential dignity.

Other things have happened, too. Deepfake technology was still very speculative when we started writing this, and now it’s ubiquitous. One of our plot points in Book Three looks pretty straightforward now.

I don’t see many robots

DA We’re in real danger of miseducating people about the nature of artificial intelligence. Sci-fi tells two stories about AI: we made it and it wants to kill us, or we made it and we want it to love us. But AI is neither of those things.

TF What people mean is: where are the computers that talk and act like people? Robots are everywhere in The Expanse. But when you build a machine to do a job, you build it in a form that most efficiently does that job, and make it smart enough to do that job.

Is your future dystopian?

DA When Season One of the TV version came out in the US, we were considered very dystopian. Then the 2016 election brought Donald Trump to power, and suddenly we were this uplifting and hopeful show. Of course we’re neither. The argument the show makes is that humans are humans. We bumble through the future the way we bumbled through the past. What changes is technique: what we learn to do, and what we learn to make.

TF We don’t murder each other in a jealous rage with pointy sticks any more. Now we use guns. But the jealous rage and the urge to murder hasn’t gone away.

DA What we’ve managed to do is expand what it means to be a tribe. From a small group of people who are actually physically together…

TF …and mostly genetically related …

DA …we’ve expanded to nation states and belief systems and…

TF …fans of a particular TV show.

DA The great success of humanity so far isn’t in abolishing tribalism, because we didn’t. It’s in broadening the size of the tribe over and over. Of course, there’s still work to be done there.

Fatally punctured by a sword-swallower’s blade

Visiting Flop: 13 stories of failure at The Octagon, University College London, for New Scientist, 6 November 2019

Quitting your job? Then remember to clear out your locker. One former employee of University College London left a bottle of home-made plum brandy in a drawer. The macerated plum was eventually discovered, mulled over (sorry), misidentified as a testicle (species unknown), and added to the university’s collection. Now that same collection fuels Flop, in UCL’s tiny Octagon gallery.

It’s not so much an exhibition as a series of provocations. (A notice by the last case asks you to share your own accounts of failure on a postcard “so we can all start learning from each other’s mistakes.”) After all, what is a failure? Do failures exist outside of the realm of human judgement? (“Can animals have accidents?” is a favourite undergraduate philosophy question. Humans can: one of the more gruesome exhibits here is a human heart, fatally punctured by a sword-swallower’s blade.)

How we define failure depends on our changing needs and circumstances. There was a time, not very long ago, when the plethora of human languages seemed indicative of some deep, Biblical failure to establish amity across our species. Concerted efforts were made to establish a single, synthetic language through which we might all be understood. There’s a fascinating page here from an essay by John Wilkins, whose Royal Society language project attempted to establish an analytical language that would allow people to communicate despite not sharing the same tongue. It foundered because the Royal Society couldn’t agree on how many essential concepts existed in the world.

Now that we live among artificially intelligent agents, the best of whom are more than capable of translating even spoken speech in real time, we find failure in our reduction of linguistic diversity. We bemoan the loss of languages (3000 of them have perished since 1910) , and mourn the cultural deficit left by their demise.

Can objects fail? Only in the sense that they fail to perform an expected action. Silly Putty, a perenially popular toy, was the result of a failed attempt to produce a synthetic rubber substitute during World War II. People can “fail” in much the same way. Percy Wyndham Lewis was kicked out of the Slade School of Fine Art for arguing with his lecturers, and went on to become the foremost avant-garde artist and writer of his generation.

If these examples of failure feel a bit tenuous, well, that’s really the point Flop wants to make: what’s interesting is how we deal with failures, not how we define them.
“Perhaps contrasting failure with success is the real problem,” the introductory material explains. “If every activity has to end in either one or the other, it denies the nuanced and messy complexities of life.”

“You made a person!”

Watching Ang Lee’s Gemini Man for New Scientist, 30 October 2019 

“You made a person!” cries Will Smith (tearful, stressed, and twenty-five years younger than he ought to be). “Out of another person! And then you sent me to kill him!”

He’s facing off against his adoptive dad Clay Verris (Clive Owen) who makes perfect soldiers for a living — or tries to. (Smith’s “Junior” is his latest wheeze.)

Why Junior must kill his “clone-father” Henry Brogan, an exhausted hitman (also played by Will Smith, this time at his real age — and has a black actor ever been given a whiter name?), is never made entirely clear.

Junior wants answers, as do we all, though it’s obvious by now we’re not going to get them: not from a script that’s been kicking around Hollywood for 20 years, and not from a director whose bleached, hectic, high frame-rate 3-D cinematography lends walls and machinery greater physical presence than faces.

Gemini Man hurls itself into not one, but two gaping logic holes. First, the film relies on the inherent menace implicit in the idea of human cloning. But who in their right mind would ever be afraid of a mere clone? We deal with far more serious incursions of the uncanny every day, from the bodyless ubiquity of digital personal assistants like Siri and Alexa, to the creepy co-evolutionary pals-for-ever antics of our pet dogs and cats, to the not inconsiderable challenge that is other people, many of whom look, speak, and behave quite differently to ourselves.

The only film that ever made clones scary was The Boys from Brazil (1978), in which a Brazilian clinic starts churning out copies of Adolf Hitler — and even here the hero comes to realise that the clones themselves are utterly harmless, that it’s the Nazis who should be commanding our attention.

Problem number two: by the time you’ve made your “perfect soldiers” flexible enough to do the job you want them to do, you’ve given them enough agency to disobey you.

This bind has driven the plot of much good robot-infused literature, from the synthetic human’s birth in Karel Čapek’s play R.U.R. (1920), to its entanglement in some famous puzzle-stories by Isaac Asimov (who famous Three Laws of Robotics are basically three laws of slavery with a sugar coating).

Algis Budrys set the capstone on this sort of tale in 1957 with the short story “First to Serve”, in which a government engineering team are driven round the bend in the effort to create an obedient military robot. “Haven’t you got it through your head?” a researcher cries in exasperation: “Pimmy’s the perfect soldier, all of him, with all his abilities. That includes individuality, curiosity, judgment — and intelligence. Cut one part of that, and he’s no good. You’ve got to take the whole cake, or none at all. One way you starve — and the other way you choke.”

A word about Gemini Man’s de-ageing technology, which supposedly took 20 years’ development before it was good enough to halve Will Smith’s age. First, it didn’t. David Fincher made The Curious Case of Benjamin Button in 2008. Second, it needs a script to make it work. (Scorcese’s The Irishman (still in cinemas when this was written) is so involving, you never notice that young De Niro’s face is wobbling about on a more than seventy-year-old body). Third: Will Smith looks way better now than he did as the Fresh Prince of Bel Air. Hit the gym, dear middle-aged readers, you have everything to live for.

Nothing to do except try not to die

Moving to Mars for New Scientist, 18 October 2019

Step into Moving to Mars, an exhibition of Mars mission and colony design at London’s Design Museum, and you are confronted, immediately, with some very good reasons not to move there. Minatory glowing wall texts announce that Mars was not made for you; that there is no life and precious little water; that, clad in a space suit, you will never touch, taste or smell the planet you now call “home”. As Lisa Grossman wrote for New Scientist a couple of years ago, “What’s different about Mars is that there is nothing to do there except try not to die.”

It’s an odd beginning for such an up-beat and celebratory show, but it provides some valuable dark ground against which the rest of the show can sparkle — a show that is, as its chief curator Justin McGuirk remarks, “not about Mars; this is an exhibition about people.”

Next up: a quick yet lucid dash through what the science-fiction writer Kim Stanley Robinson calls “the history of Mars in the human mind”. A Babylonian clay tablet and a Greek vase speak to our early cosmological ideas about the planets; a poster for the film Total Recall (the good one, from 1990), reminds us of Mars’s psychological menace.

The bulk of the show focuses on our current plans for the red planet. There are real space suits and models of real rovers, maquettes of 3D-printed Martian settlements and prototypes of Mars-appropriate clothing and furniture. Mission architectures and engineering sketches line the walls. Real hammers meant for the International Space Station (hollow, and loaded with ball bearings to increase their utility in zero-gravity) are wall-mounted beside a nifty low-gravity table that has yet to leave, and may indeed never leave, Earth. This, of course, is the great strength of approaching science through design: reality and speculation can be given equal visual weight, drawing us into an informed conversation about what it is we actually want from the future. Some readers may remember a tremendous touring exhibition, Hello Robot in 2017, which did much the same for robotics and artificial intelligence.

Half way round the show, I relaxed in a fully realised Martian living pod by the international design firm Hassell and their engineering partners Eckersley O’Callaghan. They’d assembled this as part of NASA’s 3D-Printed Habitat Challenge — the agency’s programme to develop habitat ideas for deep space exploration — and it combines economy, recycling, efficiency and comfort in surprising ways. Xavier De Kestelier, Hassell’s head of design technology and innovation, was on hand to show me around, and was particularly proud of the chairs here, which are are made of recycled packaging: “The more you eat, the more you sit!”

So much for the promise of Martian living. The profound limitations of that life were brought home to me a working hydroponic system by Growstack. Its trays of delicious cress and lettuce reminded me, rather sharply, that for all the hype, we are still a very long way from being able to feed ourselves away from our home world. We’re still at the point, indeed, where a single sunflower and a single zinnia, blossoming aboard the ISS — the former in 2012, the latter in 2016 — still make headlines.

The Growstack exhibit and other materials about Martian horticulture also marked an important cultural shift, away from the strategic, militarised thinking that characterised early space exploration in the Cold War, and towards more humane, more practical questions about how one lives an ordinary life in such extraordinary, and extraordinarily limited, environments.

It’s no surprise that the Russian were thinking seriously about these questions long before the rest of us, and it was good to see Russian space cultures given their due in this impressively international show. All through the 19th century, researchers for the Tsarist government tried to develop agriculture in mostly frozen and largely infertile Siberia. Well into the Soviet era, soil scientists undertook extreme expeditions over vast distances in pursuit of insane agricultural speculations. It shows up in their popular culture. “Hold on, geologist,” ran one pop song of 1951, “hold out, geologist, you are brother of the wind and sun!” And then there are the films of Pavel Vladimirovich Klushantsev, born 1910 in St Petersburg.

Klushantsev’s documentary Road to the Stars (1957), a meticulous, scientifically accurate vision to the physics, engineering, ergonomics of space travel, was followed seven years later by Moon (1965), describing the exploration, mining, settlement and domestication of a new land. Both films feature succulent gardens glistening under space domes, and workers eager to tend them, and bowls full of peaches beside every workstation, offering a little, literal taste of home.

I was delighted to see here a screen showing *Mars* (1968), a much less celebrated effort — Klushantsev’s saturated, multicoloured vision of man on the Red Planet. It’s the film with the dog in the spacesuit: an image people who’ve never heard of this director treasure for its kitsch value. It’s the film that earned him a telegram which read: “Due to the low quality of your work, we hereby inform you that we are terminating your contract with the studio.”

So much for the Soviet imagination.

But other cultures, each with their own deep, historical motivations, have since stepped up with plans to settle Mars. My favourites projects originate in the Middle East, where subterranean irrigation canals were greening the desert a full millennium before the astronomer Percival Lowell thought he spotted similar structures on Mars. (The underground networks called khettaras in Morocco irrigated much of its northern oasis region right up until the early 1970s, when government policies began to favour dam construction.)

Having raised major cities in one of the most inhospitable regions on Earth — and this in less than a generation — we should hardly be surprised that the rulers of the United Arab Emirates believe it’s feasible to establish a human settlement on Mars by 2117. A development hub, “Mars Scientific City”, is scheduled to open in Dubai in the next three to four years, and will feature a laboratory that will simulate the red planet’s terrain and harsh environment. It will be, I suppose, a sort of extension of the 520-day Mars 500 simulation that in 2011 sent six volunteers on a round trip to the Red Planet without stepping out of the Russian Institute for Biomedical Problems in Moscow.

The playfulness of “Martian thinking” is quite properly reflected in this playful and family-orientated exhibition. The point, made very well here, is that this play, this freedom from strictures and established lines of thought, is essential to good design. Space forces you to work from first principles. It forces you to think about mass, and transport, and utility, and reusability. And I don’t think it’s much of a coincidence that Eleanor Watson, the assistant curator on this show, has been chosen to curate this year’s Global Grad Show, which in November will be bringing the most innovative new design thinking to Dubai — a city which, in contending with its own set of environmental extremes, often feels half way to Mars already.

As I was leaving Moving to Mars I was drawn up short by what looked like some cycling gear. Anna Talvi, a graduate of the Royal College of Art in London, has constructed her flesh-hugging clothing to act as a sort of “wearable gym” to counter the muscle wasting and bone loss caused by living in low gravity. She has also tried to tackle the serious psychological challenges of space exploration, by permeating her fabrics with comforting scents. Her X.Earth perfumed gloves “will bring you back to your Earth-memory place at the speed of thought”, with the the smell of freshly cut grass, say, or the smell of your favourite horse.

Those gloves, even more than that hydroponically grown lettuce, brought home to me the sheer hideousness of space exploration. It’s no accident that this year’s most ambitious science fiction movies, Aniara and Ad Astra, have both focused on the impossible mental and spiritual toll we’d suffer, were we ever to swap our home planet for a life of manufactured monotony.

There’s a new realism creeping into our ideas of living off-world, along with a resurgence of optimism and possibility. And this is good. We need light and shade as we plan our next great adventure. How else can we ever hope to become Martian?

“Intelligence is the wrong metaphor for what we’ve built”

Travelling From Apple to Anomaly, Trevor Paglen’s installation at the Barbican’s Curve gallery in London, for New Scientist, 9 October 2019

A COUPLE of days before the opening of Trevor Paglen’s latest photographic installation, From “Apple” to “Anomaly”, a related project by the artist found itself splashed all over the papers.

ImageNet Roulette is an online collaboration with artificial intelligence researcher Kate Crawford at New York University. The website invites you to provide an image of your face. An algorithm will then compare your face against a database called ImageNet and assign you to one or two of its 21,000 categories.

ImageNet has become one of the most influential visual data sets in the fields of deep learning and AI. Its creators at Stanford, Princeton and other US universities harvested more than 14 million photographs from photo upload sites and other internet sources, then had them manually categorised by some 25,000 workers on Amazon’s crowdsourcing labour site Mechanical Turk. ImageNet is widely used as a training data set for image-based AI systems and is the secret sauce within many key applications, from phone filters to medical imaging, biometrics and autonomous cars.

According to ImageNet Roulette, I look like a “political scientist” and a “historian”. Both descriptions are sort-of-accurate and highly flattering. I was impressed. Mind you, I’m a white man. We are all over the internet, and the neural net had plenty of “my sort” to go on.

Spare a thought for Guardian journalist Julia Carrie Wong, however. According to ImageNet Roulette she was a “gook” and a “slant-eye”. In its attempt to identify Wong’s “sort”, ImageNet Roulette had innocently turned up some racist labels.

From “Apple” to “Anomaly” also takes ImageNet to task. Paglen took a selection of 35,000 photos from ImageNet’s archive, printed them out and stuck them to the wall of the Curve gallery at the Barbican in London in a 50-metre-long collage.

The entry point is images labelled “apple” – a category that, unsurprisingly, yields mostly pictures of apples – but the piece then works through increasingly abstract and controversial categories such as “sister” and “racist”. (Among the “racists” are Roger Moore and Barack Obama; my guess is that being over-represented in a data set carries its own set of risks.) Paglen explains: “We can all look at an apple and call it by its name. An apple is an apple. But what about a noun like ‘sister’, which is a relational concept? What might seem like a simple idea – categorising objects or naming pictures – quickly becomes a process of judgement.”

The final category in the show is “anomaly”. There is, of course, no such thing as an anomaly in nature. Anomalies are simply things that don’t conform to the classification systems we set up.

Halfway along the vast, gallery-spanning collage of photographs, the slew of predominantly natural and environmental images peters out, replaced by human faces. Discrete labels here and there indicate which of ImageNet’s categories are being illustrated. At one point of transition, the group labelled “bottom feeder” consists entirely of headshots of media figures – there isn’t one aquatic creature in evidence.

Scanning From “Apple” to “Anomaly” gives gallery-goers many such unexpected, disconcerting insights into the way language parcels up the world. Sometimes, these threaten to undermine the piece itself. Passing seamlessly from “android” to “minibar”, one might suppose that we are passing from category to category according to the logic of a visual algorithm. After all, a metal man and a minibar are not so dissimilar. At other times – crossing from “coffee” to “poultry”, for example – the division between categories is sharp, leaving me unsure how we moved from one to another, and whose decision it was. Was some algorithm making an obscure connection between hens and beans?

Well, no: the categories were chosen and arranged by Paglen. Only the choice of images within each category was made by a trained neural network.

This set me wondering whether the ImageNet data set wasn’t simply being used as a foil for Paglen’s sense of mischief. Why else would a cheerleader dominate the “saboteur” category? And do all “divorce lawyers” really wear red ties?

This is a problem for art built around artificial intelligence: it can be hard to tell where the algorithm ends and the artist begins. Mind you, you could say the same about the entire AI field. “A lot of the ideology around AI, and what people imagine it can do, has to do with that simple word ‘intelligence’,” says Paglen, a US artist now based in Berlin, whose interest in computer vision and surveillance culture sprung from his academic career as a geographer. “Intelligence is the wrong metaphor for what we’ve built, but it’s one we’ve inherited from the 1960s.”

Paglen fears the way the word intelligence implies some kind of superhuman agency and infallibility to what are in essence giant statistical engines. “This is terribly dangerous,” he says, “and also very convenient for people trying to raise money to build all sorts of shoddy, ill-advised applications with it.”

Asked what concerns him more, intelligent machines or the people who use them, Paglen answers: “I worry about the people who make money from them. Artificial intelligence is not about making computers smart. It’s about extracting value from data, from images, from patterns of life. The point is not seeing. The point is to make money or to amplify power.”

It is a point by no means lost on a creator of ImageNet itself, Fei-Fei Li at Stanford University in California, who, when I spoke to Paglen, was in London to celebrate ImageNet’s 10th birthday at the Photographers’ Gallery. Far from being the face of predatory surveillance capitalism, Li leads efforts to correct the malevolent biases lurking in her creation. Wong, incidentally, won’t get that racist slur again, following ImageNet’s announcement that it was removing more than half of the 1.2 million pictures of people in its collection.

Paglen is sympathetic to the challenge Li faces. “We’re not normally aware of the very narrow parameters that are built into computer vision and artificial intelligence systems,” he says. His job as artist-cum-investigative reporter is, he says, to help reveal the failures and biases and forms of politics built into such systems.

Some might feel that such work feeds an easy and unexamined public paranoia. Peter Skomoroch, former principal data scientist at LinkedIn, thinks so. He calls ImageNet Roulette junk science, and wrote on Twitter: “Intentionally building a broken demo that gives bad results for shock value reminds me of Edison’s war of the currents.”

Paglen believes, on the contrary, that we have a long way to go before we are paranoid enough about the world we are creating.

Fifty years ago it was very difficult for marketing companies to get information about what kind of television shows you watched, what kinds of drinking habits you might have or how you drove your car. Now giant companies are trying to extract value from that information. “I think,” says Paglen, “that we’re going through something akin to England and Wales’s Inclosure Acts, when what had been de facto public spaces were fenced off by the state and by capital.”

Hurtling towards zero

Watching Richard Ladkani’s Sea of Shadows for New Scientist, 2 October 2019

This is the story of the world’s smallest whale, the vaquita, reduced in number to fewer than 30 individuals, and hiding out in the extreme south-western corner of its territory in the Sea of Cortez. It is not a story that will end well, though Richard Ladkani (whose 2016 Netflix documentary The Ivory Game was shortlisted for the Oscars in 2017) has made something here which is very hard to look away from.

This is not an environmental story. This is a true crime. No-one’s interested in hunting the vaquita. The similarly sized Totoaba fish, which shares the vaquita’s waters, is another matter. It’s called the cocaine of the sea — a nickname that makes no sense whatsoever until you learn that the Mexican drug cartels have moved into the totoaba business to satisfy demand from the Chinese luxury market. (It’s the usual film-flam: the fish’s swim bladders are supposed to possess rare medical properties. )

Illegal gill nets that catch the totoaba — itself a rapidly declining population — also catch and kill vaquitas. The government talks a good environmental game but has let the problem get out of hand. Law-abiding fishing communities are ruined by blanket fishing bans while the illegals operate with near-impunity. Late on in the film, there’s some CCTV footage of a couple of soldiers having some car trouble. They ask for help from a passing motorist. Who shoots one of the soldiers dead. Bam. Just like that. And drives away. Meet Oscar Parra, the tortoaba padron of Santa Clara. (I said you couldn’t look away; I didn’t say you wouldn’t want to.)

Things are so bad, a scheme is dreamt up to remove the remaining vaquitas from the ocean and keep them in captivity. It’s an absurdly desperate move, because virtually nothing is known about the vaquita’s disposition and habits. (Some locals believe the creature is a myth dreamt up by a hostile government to bankrupt the poor: how’s that for fake news?) Project leader Cynthia Smith explains the dilemma facing the vaquita: “possible death in our care or certain death in the ocean”. She knows what she’s doing — she a senior veterinarian for the U.S. Navy Marine Mammal Program — but no one has ever tried to capture, let alone keep, a vaquita before. This could go very wrong indeed. (And still, you cannot look away…)

Sea of Shadows won the Audience Award at the Sundance Film Festival in February this year; National Geographic snapped it up for $3million. It’s built around a collaborative investigation between Andrea Crosta, executive director and co-founder of Earth League International (the hero-detectives of The Ivory Game) and Carlos Loret de Mola, a popular correspondent and news anchor in Mexico, whose topical show Despierta reaches an international audience of 35 million people a day. Crosta and de Mola and the Sea Shepherd Conservation Society, their maritime partners in crime-prevention, are all of them expert in handling and appealing to the media. Everything about this film that might rankle the viewer is entirely deliberate — the film’s “whodunnit” structure, the way all content is crammed into a pre-storyboarded narrative, then squeezed to release a steady drip-drip-drip of pre-digested information. Sea of Shadows is pure NatGeo fodder, and if you don’t like that channel much, you won’t like this at all.

Just bear in mind, the rest of us will be perching on the edge of our sofas, in thrall to drone-heavy cinematography that owes not a little to Denis Villeneuve’s 2015 thriller Sicario, rocked by a thumping score full of dread and menace, and appalled by a story headed pell-mell for the dark.

Rare resources are doomed to extinction eventually because the rarer a resource is, the more expensive it is, and the more incentive there is to trade in it. This is why, past a certain point, rare stocks hurtle towards zero.

Can the vaquita be saved? Sea of Shadows was made in 2018 and says there are fewer than 30 vaquitas in the ocean.

Today there are fewer than 10.

Normal fish and stubby dinosaurs

Reading Imagined Life by James Trefil and Michael Summers for New Scientist, 20 September 2019

If you can imagine a world that is consistent with the laws of physics,” say physicist James Trefil and planetary scientist Michael Summers, “then there’s a good chance that it exists somewhere in our galaxy.”

The universe is dark, empty, and expanding, true. But the few parts of it that are populated by matter at all, are full of planets. Embarrassingly so: interstellar space itself is littered with hard-to-spot rogue worlds, ejected early on in their solar system’s history, and these worlds may outnumber orbiting planets by a factor of two to one. (Not everyone agrees: some experts reckon rogues may out-number orbital worlds 1000 to one. One of the reasons the little green men have yet to sail up to the White House, is that they keep hitting space shoals.)

Can we conclude, then, that this cluttered galaxy is full of life? The surprising (and frustrating) truth is that we genuinely have no idea. And while Trefil and Summers are obviously primed to receive with open arms any visitors who happen by, they do a splendid job, in this, their second slim volume together of explaining just how tentative and speculative our thoughts about exobiology actually are, and why.

Exoplanets came out in 2013; Imagined Life is a sort of sequel and is, if possible, even more accessible. In just 14 pages, the authors outline the physical laws constraining the universe. Then they rattle through the various ways we can define life, and why spotting life on distant worlds is so difficult (“For just about every molecule that we could identify [through spectroscopy] as a potential biomarker of life on an exoplanet, there is a nonbiological production mechanism.”). They list the most likely types of environment on which life may have evolved, from water worlds to Mega Earths (expect “normal fish… and stubby dinosaurs”), from tidally locked planets to wildly exotic (but by no means unlikely) superconducting rogues. And we haven’t even reached the meat of this tiny book yet – a tour, planet by imaginary planet, of the possibilities for life, intelligence, and civilisation in our and other galaxies.

Most strange worlds are far too strange for life, and the more one learns about chemistry, the more sober one’s speculations become. Water is common in the universe, and carbon not hard to find, and this is as well, given the relative uselessness of their nearest equivalents (benzene and silicon, say). The authors argue enthusiastically for the possibilities of life that’s “really not like us”, but they have a hard time making it stick. Carbon-based life is pretty various, of course, but even here there may be unexepected limits on what’s possible. Given that, out of 140 amino acids, only 22 have been recruited in nature, it may be that mechanisms of inheritance converge on a surprisingly narrow set of possibilities.

The trick to finding life in odd places, we discover, is to look not out, but in, and through. “Scientists are beginning to abandon the idea that life has to evolve and persist on the surface of planets” the authors write, laying the groundwork for their description of an aquatic alien civilisation for whom a mission to the ocean surface “would be no stranger to them than a mission to Mars is to us.”

I’m not sure I buy the authors’ stock assumption that life most likely breeds intelligence most likely breeds technology. Nothing in biology , or human history, suggests as much. Humans in their current iteration may be far odder than we imagine. But what the hell: Imagined Life reminds me of those books I grew up with, full of artists’ impressions of the teeming oceans of Venus. Only now, the science is better; the writing is better; and the possibiliities, being more focused, are altogether more intoxicating.