Breakfast with Ryoji Ikeda

Meeting the artist Ryoji Ikeda for the Financial Times, 29 November 2019

At breakfast in a Paris café, the artist and composer Ryoji Ikeda looks ageless in a soft black cap and impenetrably dark glasses, dressed all in black so as to resemble the avatar from an indie video game.

His work too is severe, the spectrum reduced to grayscale, light to pixels, sound to spikes. Yet Ikeda is no minimalist: he is interested in the complexity that explodes the moment you reduce things to their underlying mathematics.

An artist in light, video, sound and haptics (his works often tremble beneath your feet), Ikeda is out to make you dizzy, to overload your senses, to convey, in the most visceral manner (through beats, high volumes, bright lights and image-blizzards) the blooming, buzzing confusion of the world. “I like playing around with the thresholds of perception,” he says. “If it’s too safe, it’s boring. But you have to know what you’re doing. You can hurt people.”

Ikeda’s stringent approach to his work began in the deafening underground clubs of Kyoto. There, in the mid-1990s, he made throbbing sonic experiences with Dumb Type, a coalition of technologically adept experimental artists. And he can still be this immediate when he wants to be: visitors to the main pavilion at this year’s Venice Biennale found themselves squeezed through “Spectra III” (first assembled in 2008), a white corridor so evenly and brightly lit your eyes rejected what they saw, leaving you groping your way out as if in total darkness.

These days, though, he is better known for installations that go straight for the cerebral and mathematical. His ongoing “data-verse” project consists of three massively complex computer animations. The first part, “data-verse 1”, is based on static data from CERN, Nasa, the Human Genome Project and other open sources. “data-verse” contains animations, tables, graphs, matrices, 3D models, Lidar projections, maps. But what is being depicted here: something very small, or very big? There’s no way to tell. The data have peeled away from the things they represent and are dancing their own pixelated dance. Numbers have become rivers. At last the viewer’s mind surrenders to the flow and rhythm of this frenetic 12-minute piece.

It would be polite to say that “data-verse” is beautiful — but it isn’t. Rather, it is sublime, evoking a world stripped back to its mathematical bones. “If it’s beautiful, you can handle it; the sublime, you cannot,” Ikeda says. “If you stand in some great whited-out landscape in Lapland, the Sahara or the Alps, you feel something like fear. You’re trying to draw inform­ation from the world, but it’s something that your brain cannot handle.”

Similarly, the symmetrical, self-similar “data-verse” is an artwork that your mind struggles to navigate, tugging at every locked door in an attempt to regain purchase on the world.

“You try to understand, but you give up — and then it’s nice. Because now you are experiencing this piece the same way you listen to music,” Ikeda says. “It’s simply a manipulation of numbers and relationships, like a musical composition. It’s very different from the sort of visual art where you’re looking through the surface of the painting or the sculpture to see what it represents.”

When we meet, Ikeda is on his way to Tokyo Midtown, and the unveiling of “data-verse 2” (this one based on dynamic data “like the weather, or stock exchanges”). The venue is Beyond Watchmaking, an exhibition arranged by his patron, the eccentric family-run Swiss watchmaker Audemars Piguet. The third part of data-verse is due to be unveiled next year.

It is a vastly ambitious project but Ikeda has always tended towards the expansive. He pulls out of his suitcase an enormously heavy encyclopedia of sonic visualisations. “I wanted you to see this,” he says with a touching pride, leafing through page after page of meticulously documented oscilloscoped forms. Encyclopedia Cyclo.id was compiled with his friend Carsten Nicolai, the German multimedia artist, in 1999. Each figure here represents a particular sound. The more complex figures resemble watch faces. “It’s for designers, really,” Ikeda shrugs, shutting the book, “and architects.”

And the point of this? That lawful, timeless mathematics underpins the world and all our activities within it.

Ikeda spends 10 months out of every 12 travelling: “I really work in the airport or the kitchen. I don’t like the studio.” Months spent working out problems on paper and in his head are interspersed with intense, collaborative “cooking sessions” with a coterie of exceptional coders — creative sessions in which all previous assumptions are there to be challenged.

However, “data-verse” is likely to be Ikeda’s last intensely technological artwork. At the moment he is inclining more towards music and has been arranging some late compositions by John Cage in a purely acoustic project. As comfortable as he is around microphones, amps and computers, Ikeda isn’t particularly affiliated to machines.

“For a long time, I was put in the media-art category,” he says, “and I was so uncomfortable, because so much of that work is toylike, no depth to it at all. I’m absolutely not like this.”

Ikeda’s art, built not from things but from quantities and patterns, has afforded him much freedom. But he is acutely aware that others have more freedom still: “Mathematicians,” he sighs, “they don’t care about a thing. They don’t even care about time. It’s very interesting.”

668 televisions (some of them broken)

Visiting the Nam June Paik exhibition at Tate Modern for New Scientist, 27 November 2019

A short drive out of Washington DC, in an anonymous industrial unit, there is an enormous storage space crammed to the brim with broken television sets, and rolling stack shelving piled with typewriters, sewing machines and crudely carved coyotes.

This is the archive of the estate of Nam June Paik, the man who predicted the internet, the Web, YouTube, MOOCs, and most other icons of the current information age; an artist who spent much of his time engineering, dismantling, reusing, swapping out components, replacing old technology with better technology, delivering what he could of his vision with the components available to him. Cathode ray tube televisions. Neon. Copper. FORTRAN punch cards. And a video synthesizer, designed with the Tokyo artist-engineer Shuya Abe in 1969. The signature psychedelic video effects of Top of the Pops and MTV began life here.

Paik was born in Seoul in 1932, during the Japanese occupation of Korea, and educated in Germany, where he met the composers Karl-Heinz Stockhausen and John Cage. A fascinating retrospective show currently at London’s Tate Modern celebrates his involvement with that loose confederacy of artist-anarchists known as Fluxus. (Yoko Ono was a patron. David Bowie and Laurie Anderson were hangers-on.)

Beneath Paik’s celebrated, and celebrity-stuffed concerts, openings and “happenings” — there’s what amounts — in the absence of Paik’s controlling intelligence (he died in 2006) — to a pile of junk. 668 televisions, some of them broken. A black box the size of a double refrigerator, containing the hardware to drive one of Paik’s massive “matrices”, Megatron/Matrix, an eight-channel, 215-screen video wall, in pieces now, a nightmare to catalogue, never mind reconstruct, stored in innumerable tea chests.

The trick for Saisha Grayson, the Smithsonian American Art Museum’s curator of time-based media, and Lynn Putney its associate registrar, is to distinguish the raw material of Paik’s work from the work itself. Then curators like Tate Modern’s Sook Kyung Lee must interpret that work for a new generation, using new technology. Because let’s face it: in the end, more or less everything Paik used to make his art will end up in the bin. Consumer electronics aren’t like a painter’s pigments, which can be analysed and copied, or like a sculptor’s marble, which can, at a pinch, be repaired.

“Through Paik’s estate we are getting advice and guidance about what the artist really intended to achieve,” Lee explains, “and then we are simulating those things with new technology.”

Paik’s video walls — the works by which he’s best remembered, are monstrously heavy and absurdly delicate. But the Tate has been able to recreate Paik’s Sistine Chapel for this show. Video projectors to fill a room with a blizzard of cultural and pop-cultural imagery from around the world — a visual melting pot reflective of Paik’s vision of a technological utopia, in which “telecommunication will become our springboard for new and surprising human endeavors.” The projectors are new but the feel of this recreated piece is not so very different to the 1994 original.

To stand here, bombarded by Bowie and Nixon and Mongolian throat singers and all the other flitting, flickering icons of Paik’s madcap future, is to remember all our hopes for the information age: “Video-telephones, fax machines, interactive two-way television… and many other variations of this kind of technology are going to turn the television set into an «expanded-media» telephone system with thousands of novel uses,” Paik enthused in 1974, “not only to serve our daily needs, but to enrich the quality of life itself.”

Worth losing sleep over

Watching Human Nature, directed by Adam Bolt, for New Scientist, 27 November 2019.

Mature and intelligent, Human Nature shows us how gene editing works, explores its implications and – in a field awash with alarmist rhetoric and cheap dystopianism – explains which concerns are worth losing sleep over.

This gripping documentary covers a lot of ground, but also works as a primer on CRISPR, the spectacular technology that enables us to cut and paste genetic information with something like the ease with which we manipulate text on a computer. Human Nature introduces us to key start-ups and projects that promise to predict, correct and maybe enhance the genetic destinies of individuals. It explores the fears this inspires, and asks whether they are reasonable. Its conclusions are cautious, well-argued and largely optimistic.

Writers Regina Sobel and Adam Bolt (who also directs) manage to tell this story through interviews. Key players in the field, put at their ease during hours of film-making, speak cogently to camera. There is no narration.

Ned Piyadarakorn’s graphics are ravishing and yet absurdly simple to grasp. They need to be, because this is an account hardly less complex than those in the best popular science books. As the film progressed, I began to suspect that the film-makers assume we aren’t idiots. This is so rare an experience that it took a while to sink in.

There are certain problems the film can’t get round, though. There are too many people in white coats moving specks from one Petri dish to another. It couldn’t be otherwise, given the technology involves coats, specks, Petri dishes and little else by way of props the general viewer can understand. That this is a source of cool amusement rather than irritation is largely due to the charisma of the film’s cast of researchers, ethicists, entrepreneurs, diagnosticians, their clients and people with conditions that could be helped by the technique, such as schoolboy David Sanchez, who has sickle-cell anaemia. We learn that researchers are running clinical trials using CRISPR to test a therapy for his condition.

Foundational researchers like Jennifer Doudna and Jill Banfield, Emmanuelle Charpentier and Fyodor Urnov provide star quality. Provocateurs like Stephen Hsu, a cheerful promoter of designer babies, and the longevity guru George Church are given room to explain why they aren’t nearly as crazy as some people assume.

Then the bioethicist Alta Charo makes the obvious but frequently ignored point that the Brave New World nightmare CRISPR is said to usher in is a very old and well-worn future indeed. Sterilisations, genocide and mass enslavement have been around a lot longer than CRISPR, she says, and if the new tech is politically abused, we will only have our ourselves to blame.

There is, of course, the possibility that CRISPR will let loose some irresistibly bad ideas. Consider the mutation in a gene called ADRB1, which allows us to get by on just 4 hours’ sleep a night. I would leap at the chance of a therapy that freed up my nights – but I wonder what would happen if everyone else followed suit. Would we all live richer, more fulfilled lives? Or would I need a letter from my doctor when I applied for a 16-hour factory shift?

The point, as Human Nature makes all too clear, is that the questions we should be asking about gene editing are only superficially about the technology. At heart, they are questions about ourselves and our values.

Now we use guns

Talking to Daniel Abraham and Ty Franck (better known as the sci-fi writer James S. A. Corey) for New Scientist, 20 November 2019

Daniel Abraham and Ty Franck began collaborating on their epic, violent, yet uncommonly humane space opera The Expanse in 2011 with the book Leviathan Wakes. The series of novels pits the all-too-human crew of an ice-hauler from Ceres against the studied realpolitik of a far-from-peaceful solar system. The ninth and final book is due out next year. Meanwhile, the TV series enters its fourth season, available on Amazon Prime from 13 December.

The Expanse began as a game, became a series of novels and ended up on television. Was it intended as a multimedia project?

Ty Franck Initially it was just a video game that didn’t work, then it evolved into a tabletop role-playing game.

Daniel Abraham And then books, and then a TV show. I think intention is a very bold word to use for any of this. It implies a certain level of cunning that I don’t think we actually have.

What inspired its complex plot?

TF I’m a big fan of pre-classical history. I pull a lot of weird Babylonian and Persian and Assyrian history into the mix. It’s funny how often people accuse you of critiquing current events. They’re like, ‘You are commenting on this elected politician!’ And I’m like, ‘No, that character is Nebuchadnezzar’.

How have the humans changed in your future? Or is their lack of change the point?

DA If you really want a post-human future, change humans so that they don’t use wealth to measure status. But then they wouldn’t be human any more. We are mean-spirited little monkeys, capable of moments of great grace and kindness, and that story is much more plausible to me and much more beautiful than any post-human tale.

TF I find that the books that I remember the longest, and the books that I’ve been most entertained by, are the ones where the characters are the most human, not the least human.

You’ve mentioned Alfred Bester’s 1959 novel The Stars My Destination as an influence…

TF Exactly, and there you have an anti-hero called Gully Foyle. Gully is everything that we fear to be true about ourselves. He’s venal, and weak, and cowardly, and stupid, and mean. Watching him survive and become something more is the reason we’re still talking about that book today.

You began The Expanse nine years ago. What would you have done differently knowing what we know now about the solar system?

DA We would have made Ceres less rocky. We imagined a mostly mineral dwarf planet, and then it turned out there’s a bunch of ice on it. But this sort of thing is inevitable. You start off as accurate as possible, and a few years later you sound like Jules Verne. That the effort to get things right is doomed doesn’t take away from its essential dignity.

Other things have happened, too. Deepfake technology was still very speculative when we started writing this, and now it’s ubiquitous. One of our plot points in Book Three looks pretty straightforward now.

I don’t see many robots

DA We’re in real danger of miseducating people about the nature of artificial intelligence. Sci-fi tells two stories about AI: we made it and it wants to kill us, or we made it and we want it to love us. But AI is neither of those things.

TF What people mean is: where are the computers that talk and act like people? Robots are everywhere in The Expanse. But when you build a machine to do a job, you build it in a form that most efficiently does that job, and make it smart enough to do that job.

Is your future dystopian?

DA When Season One of the TV version came out in the US, we were considered very dystopian. Then the 2016 election brought Donald Trump to power, and suddenly we were this uplifting and hopeful show. Of course we’re neither. The argument the show makes is that humans are humans. We bumble through the future the way we bumbled through the past. What changes is technique: what we learn to do, and what we learn to make.

TF We don’t murder each other in a jealous rage with pointy sticks any more. Now we use guns. But the jealous rage and the urge to murder hasn’t gone away.

DA What we’ve managed to do is expand what it means to be a tribe. From a small group of people who are actually physically together…

TF …and mostly genetically related …

DA …we’ve expanded to nation states and belief systems and…

TF …fans of a particular TV show.

DA The great success of humanity so far isn’t in abolishing tribalism, because we didn’t. It’s in broadening the size of the tribe over and over. Of course, there’s still work to be done there.

Tyrants and geometers

Reading Proof!: How the World Became Geometrical by Amir Alexander (Scientific American) for the Telegraph, 7 November 2019

The fall from grace of Nicolas Fouquet, Louis XIV’s superintendant of finances, was spectacular and swift. In 1661 he held a fete to welcome the king to his gardens at Vaux-le-Vicomte. The affair was meant to flatter, but its sumptuousness only served to convince the absolutist monarch that Fouquet was angling for power. “On 17 August, at six in the evening Fouquet was the King of France,” Voltaire observed; “at two in the morning he was nobody.”

Soon afterwards, Fouquet’s gardens were grubbed up in an act, not of vandalism, but of expropriation: “The king’s men carefully packed the objects into crates and hauled them away to a marshy town where Louis was intent on building his own dream palace,” the Israeli-born US historian Amir Alexander tells us. “It was called Versailles.”

Proof! explains how French formal gardens reflected, maintained and even disseminated the political ideologies of French monarchs. from “the Affable” Charles VIII in the 15th century to poor doomed Louis XVI, destined for the guillotine in 1793. Alexander claims these gardens were the concrete and eloquent expression of the idea that “geometry was everywhere and structured everything — from physical nature to human society, the state, and the world.”

If you think geometrical figures are abstract artefacts of the human mind, think again. Their regularities turn up in the natural world time and again, leading classical thinkers to hope that “underlying the boisterous chaos and variety that we see around us there may yet be a rational order, which humans can comprehend and even imitate.”

It is hard for us now to read celebrations of nature into the rigid designs of 16th century Fontainebleau or the Tuileries, but we have no problem reading them as expressions of political power. Geometers are a tyrant’s natural darlings. Euclid spent many a happy year in Ptolemaic Egypt. King Hiero II of Syracuse looked out for Archimedes. Geometers were ideologically useful figures, since the truths they uncovered were static and hierarchical. In the Republic, Plato extols the virtues of geometry and advocates for rigid class politics in practically the same breath.

It is not entirely clear, however, how effective these patterns actually were as political symbols. Even as Thomas Hobbes was modishly emulating the logical structure of Euclid’s (geometrical) Elements in the composition of his (political) Leviathan (demonstrating, from first principles, the need for monarchy), the Duc de Saint-Simon, a courtier and diarist, was having a thoroughly miserable time of it in the gardens of Louis XIV’s Versailles: “the violence everywhere done to nature repels and wearies us despite ourselves,” he wrote in his diary.

So not everyone was convinced that Versailles, and gardens of that ilk, revealed the inner secrets of nature.

Of the strictures of classical architecture and design, Alexander comments that today, “these prescriptions seem entirely arbitrary”. I’m not sure that’s right. Classical art and architecture is beautiful, not merely for its antiquity, but for the provoking way it toys with the mechanics of visual perception. The golden mean isn’t “arbitrary”.

It was fetishized, though: Alexander’s dead right about that. For centuries, Versailles was the ideal to which Europe’s grand urban projects aspired, and colonial new-builds could and did out-do Versailles, at least in scale. Of the work of Lutyens and Baker in their plans for the creation of New Delhi, Alexander writes: “The rigid triangles, hexagons, and octagons created a fixed, unalterable and permanent order that could not be tampered with.”

He’s setting colonialist Europe up for a fall: that much is obvious. Even as New Delhi and Saigon’s Boulevard Norodom and all the rest were being erected, back in Europe mathematicians Janos Bolyai, Carl Friedrich Gauss and Bernhard Riemann were uncovering new kinds of geometry to describe any curved surface, and higher dimensions of any order. Suddenly the rigid, hierarchical order of the Euclidean universe was just one system among many, and Versailles and its forerunners went from being diagrams of cosmic order to being grand days out with the kids.

Well, Alexander needs an ending, and this is as good a place as any to conclude his entertaining, enlightening, and admirably well-focused introduction to a field of study that, quite frankly, is more rabbit-hole than grass.

I was in Washington the other day, sweating my way up to the Lincoln Memorial. From the top I measured the distance, past the needle of the Washington Monument, to Capitol Hill. Major Pierre Charles L’Enfant built all this: it’s a quintessential product of the Versailles tradition. Alexander calls it “nothing less than the Constitutional power structure of the United States set in stone, pavement, trees, and shrubs.”

For nigh-on 250 years tourists have been slogging from one end of the National Mall to the other, re-enacting the passion of the poor Duc de Saint-Simon in Versailles, who complained that “you are introduced to the freshness of the shade only by a vast torrid zone, at the end of which there is nothing for you but to mount or descend.”

Not any more, though. Skipping down the steps, I boarded a bright red electric Uber scooter and sailed electrically east toward Capitol Hill. The whole dignity-dissolving charade was made possible (and cheap) by map-making algorithms performing geometrical calculations that Euclid himself would have recognised. Because the ancient geometer’s influence on our streets and buildings hasn’t really vanished. It’s been virtualised. Algorithmized. Turned into a utility.

Now geometry’s back where it started: just one more invisible natural good.

Fatally punctured by a sword-swallower’s blade

Visiting Flop: 13 stories of failure at The Octagon, University College London, for New Scientist, 6 November 2019

Quitting your job? Then remember to clear out your locker. One former employee of University College London left a bottle of home-made plum brandy in a drawer. The macerated plum was eventually discovered, mulled over (sorry), misidentified as a testicle (species unknown), and added to the university’s collection. Now that same collection fuels Flop, in UCL’s tiny Octagon gallery.

It’s not so much an exhibition as a series of provocations. (A notice by the last case asks you to share your own accounts of failure on a postcard “so we can all start learning from each other’s mistakes.”) After all, what is a failure? Do failures exist outside of the realm of human judgement? (“Can animals have accidents?” is a favourite undergraduate philosophy question. Humans can: one of the more gruesome exhibits here is a human heart, fatally punctured by a sword-swallower’s blade.)

How we define failure depends on our changing needs and circumstances. There was a time, not very long ago, when the plethora of human languages seemed indicative of some deep, Biblical failure to establish amity across our species. Concerted efforts were made to establish a single, synthetic language through which we might all be understood. There’s a fascinating page here from an essay by John Wilkins, whose Royal Society language project attempted to establish an analytical language that would allow people to communicate despite not sharing the same tongue. It foundered because the Royal Society couldn’t agree on how many essential concepts existed in the world.

Now that we live among artificially intelligent agents, the best of whom are more than capable of translating even spoken speech in real time, we find failure in our reduction of linguistic diversity. We bemoan the loss of languages (3000 of them have perished since 1910) , and mourn the cultural deficit left by their demise.

Can objects fail? Only in the sense that they fail to perform an expected action. Silly Putty, a perenially popular toy, was the result of a failed attempt to produce a synthetic rubber substitute during World War II. People can “fail” in much the same way. Percy Wyndham Lewis was kicked out of the Slade School of Fine Art for arguing with his lecturers, and went on to become the foremost avant-garde artist and writer of his generation.

If these examples of failure feel a bit tenuous, well, that’s really the point Flop wants to make: what’s interesting is how we deal with failures, not how we define them.
“Perhaps contrasting failure with success is the real problem,” the introductory material explains. “If every activity has to end in either one or the other, it denies the nuanced and messy complexities of life.”

Pig-philosophy

Reading Science and the Good: The Tragic Quest for the Foundations of Morality
by James Davison Hunter and Paul Nedelisky (Yale University Press) for the Telegraph, 28 October 2019

Objective truth is elusive and often surprisingly useless. For ages, civilisation managed well without it. Then came the sixteenth century, and the Wars of Religion, and the Thirty Years War: atrocious conflicts that robbed Europe of up to a third of its population.

Something had to change. So began a half-a-millennium-long search for a common moral compass: something to keep us from ringing each other’s necks. The 18th century French philosopher Condorcet, writing in 1794, expressed the evergreen hope that empiricists, applying themselves to the study of morality, would be able “to make almost as sure progress in these sciences as they had in the natural sciences.”

Today, are we any nearer to understanding objectively how to tell right from wrong?

No. So say James Davison Hunter, a sociologist who in 1991 slipped the term “culture wars” into American political debate, and Paul Nedelisky, a recent philosophy PhD, both from the University of Virginia. For sure, “a modest descriptive science” has grown up to explore our foibles, strengths and flaws, as individuals and in groups. There is, however, no way science can tell us what ought to be done.

Science and the Good is a closely argued, always accessible riposte to those who think scientific study can explain, improve, or even supersede morality. It tells a rollicking good story, too, as it explains what led us to our current state of embarrassed moral nihilism.

“What,” the essayist Michel de Montaigne asked, writing in the late 16th century, “am I to make of a virtue that I saw in credit yesterday, that will be discredited tomorrow, and becomes a crime on the other side of the river?”

Montaigne’s times desperately needed a moral framework that could withstand the almost daily schisms and revisions of European religious life following the Protestant Reformation. Nor was Europe any longer a land to itself. Trade with other continents was bringing Europeans into contact with people who, while eminently businesslike, held to quite unfamiliar beliefs. The question was (and is), how do we live together at peace with our deepest moral differences?

The authors have no simple answer. The reason scientists keep trying to formulate one is same reason the farmer tried teaching his sheep to fly in the Monty Python sketch: “Because of the enormous commercial possibilities should he succeed.” Imagine conjuring up a moral system that was common, singular and testable: world peace would follow at an instant!

But for every Jeremy Bentham, measuring moral utility against an index of human happiness to inform a “felicific calculus”, there’s a Thomas Carlyle, pointing out the crashing stupidity of the enterprise. (Carlyle called Bentham’s 18th-century utilitarianism “pig-philosophy”, since happiness is the sort of vague, unspecific measure you could just as well apply to animals as to people.)

Hunter and Nedelisky play Carlyle to the current generation of scientific moralists. They range widely in their criticism, and are sympathetic to a fault, but to show what they’re up to, let’s have some fun and pick a scapegoat.

In Moral Tribes (2014), Harvard psychologist Joshua Greene sings Bentham’s praises:”utilitarianism becomes uniquely attractive,” he asserts, “once our moral thinking has been objectively improved by a scientific understanding of morality…”

At worst, this is a statement that eats its own tail. At best, it’s Greene reducing the definition of morality to fit his own specialism, replacing moral goodness with the merely useful. This isn’t nothing, and is at least something which science can discover. But it is not moral.

And if Greene decided tomorrow that we’d all be better off without, say, legs, practical reason, far from faulting him, could only show us how to achieve his goal in the most efficient manner possible. The entire history of the 20th century should serve as a reminder that this kind of thinking — applying rational machinery to a predetermined good — is a joke that palls extremely quickly. Nor are vague liberal gestures towards “social consensus” comforting, or even welcome. As the authors point out, “social consensus gave us apartheid in South Africa, ethnic cleansing in the Balkans, and genocide in Armenia, Darfur, Burma, Rwanda, Cambodia, Somalia, and the Congo.”

Scientists are on safer ground when they attempt to explain how our moral sense may have evolved, arguing that morals aren’t imposed from above or derived from well-reasoned principles, but are values derived from reactions and judgements that improve the odds of group survival. There’s evidence to back this up and much of it is charming. Rats play together endlessly; if the bigger rat wrestles the smaller rat into submission more than three times out of five, the smaller rat trots off in a huff. Hunter and Nedelisky remind us that Capuchin monkeys will “down tools” if experimenters offer them a reward smaller than that they’ve already offered to other Capuchin monkeys.

What does this really tell us, though, beyond the fact that somewhere, out there, is a lawful corner of necessary reality which we may as well call universal justice, and which complex creatures evolve to navigate?

Perhaps the best scientific contribution to moral understanding comes from studies of the brain itself. Mapping the mechanisms by which we reach moral conclusions is useful for clinicians. But it doesn’t bring us any closer to learning what it is we ought to do.

Sociologists since Edward Westermarck in 1906 have shown how a common (evolved?) human morality might be expressed in diverse practices. But over this is the shadow cast by moral skepticism: the uneasy suspicion that morality may be no more than an emotive vocabulary without content, a series of justificatory fabrications. “Four legs good,” as Snowball had it, “two legs bad.”

But even if it were shown that no-one in the history of the world ever committed a truly selfless act, the fact remains that our mythic life is built, again and again, precisely around an act of self- sacrifice. Pharaonic Egypt had Osiris. Europe and its holdings, Christ. Even Hollywood has Harry Potter. Moral goodness is something we recognise in stories, and something we strive for in life (and if we don’t, we feel bad about ourselves). Philosophers and anthropologists and social scientist have lots of interesting things to say about why this should be so. The life sciences crew would like to say something, also.

But as this generous and thoughtful critique demonstrates, and to quite devastating effect, they just don’t have the words.

“You made a person!”

Watching Ang Lee’s Gemini Man for New Scientist, 30 October 2019 

“You made a person!” cries Will Smith (tearful, stressed, and twenty-five years younger than he ought to be). “Out of another person! And then you sent me to kill him!”

He’s facing off against his adoptive dad Clay Verris (Clive Owen) who makes perfect soldiers for a living — or tries to. (Smith’s “Junior” is his latest wheeze.)

Why Junior must kill his “clone-father” Henry Brogan, an exhausted hitman (also played by Will Smith, this time at his real age — and has a black actor ever been given a whiter name?), is never made entirely clear.

Junior wants answers, as do we all, though it’s obvious by now we’re not going to get them: not from a script that’s been kicking around Hollywood for 20 years, and not from a director whose bleached, hectic, high frame-rate 3-D cinematography lends walls and machinery greater physical presence than faces.

Gemini Man hurls itself into not one, but two gaping logic holes. First, the film relies on the inherent menace implicit in the idea of human cloning. But who in their right mind would ever be afraid of a mere clone? We deal with far more serious incursions of the uncanny every day, from the bodyless ubiquity of digital personal assistants like Siri and Alexa, to the creepy co-evolutionary pals-for-ever antics of our pet dogs and cats, to the not inconsiderable challenge that is other people, many of whom look, speak, and behave quite differently to ourselves.

The only film that ever made clones scary was The Boys from Brazil (1978), in which a Brazilian clinic starts churning out copies of Adolf Hitler — and even here the hero comes to realise that the clones themselves are utterly harmless, that it’s the Nazis who should be commanding our attention.

Problem number two: by the time you’ve made your “perfect soldiers” flexible enough to do the job you want them to do, you’ve given them enough agency to disobey you.

This bind has driven the plot of much good robot-infused literature, from the synthetic human’s birth in Karel Čapek’s play R.U.R. (1920), to its entanglement in some famous puzzle-stories by Isaac Asimov (who famous Three Laws of Robotics are basically three laws of slavery with a sugar coating).

Algis Budrys set the capstone on this sort of tale in 1957 with the short story “First to Serve”, in which a government engineering team are driven round the bend in the effort to create an obedient military robot. “Haven’t you got it through your head?” a researcher cries in exasperation: “Pimmy’s the perfect soldier, all of him, with all his abilities. That includes individuality, curiosity, judgment — and intelligence. Cut one part of that, and he’s no good. You’ve got to take the whole cake, or none at all. One way you starve — and the other way you choke.”

A word about Gemini Man’s de-ageing technology, which supposedly took 20 years’ development before it was good enough to halve Will Smith’s age. First, it didn’t. David Fincher made The Curious Case of Benjamin Button in 2008. Second, it needs a script to make it work. (Scorcese’s The Irishman (still in cinemas when this was written) is so involving, you never notice that young De Niro’s face is wobbling about on a more than seventy-year-old body). Third: Will Smith looks way better now than he did as the Fresh Prince of Bel Air. Hit the gym, dear middle-aged readers, you have everything to live for.

Nam June Paik: Doing away with structure once and for all

Visiting Nam June Paik at Tate Modern for the Financial Times, 24 October 2019

In 1963 one of the more notorious members of Darmstadt’s new music community, Nam June Paik, stuck around fifty strips of audio tape to the wall of the Galerie Parnass in Wuppertal in Germany.

“I wanted to let the audience… act and play by itself,” he wrote, “so I have resigned the performance of music… I made various kinds of musical instruments… to expose them in a room so that the congregation may play them as they please.”

Exhausted and alienated by the difficult musics coming out of Darmstadt — Pierre Boulez, Karlheinz Stockhausen, serialism and all the rest — visitors lapped up Paik’s free-wheeling alternative. You’d go up to the wall and rub the playback head of a dismantled tape recorder along the strips, back and forth, hunting for sounds, scratches, white noise, and hey presto! you almost became a composer.

“You have to be a lot rougher with this than you think,” a gallery worker explained, showing me the Tate’s recreated Random Access. “Really scrape.”

So I scraped. And I still couldn’t get much of a sound out of the wall-mounted speakers, and now the gallery wall is covered in dirty brown ferrous oxide streaks.

The original wasn’t very effective, either. The point was that Paik was giving you permission to play, to experiment. The Swiss artist and career eccentric Josef Beuys took Paik at his word and destroyed one of the the pianos in Paik’s first solo show with an axe. And Paik dug it; they became lifelong friends.

How do you represent an artist whose chosen medium is the audience? Who spends his time chivvying it into life by gestures, situations, shocks, pornography? How do you preserve Zen of Head (1962), in which Paik dipped his head in black ink and used it to draw a line on a length of paper? How do you honour his nearly thirty-year collaboration with the cellist and performance artist Charlotte Moorman, when Variations on a Theme by Saint-Saens (1969) involves her climbing up a ladder and vanishing into a water-filled oil drum?

The many representative works gathered by the Tate can only go so far to represent Paik’s whole practice. TV Buddha (1974) is a statuette of a seated Buddha, gazing at its own televised image. Three Eggs (1975-82) — one real, one nested in an empty television, and the third a televised image of the first egg — goes beyond mere solipsism to suggest something more complex. There are robots made from TV sets here, lines of code from early experiments at Bell Labs in New Jersey, abd TV bras and TV spectacles that seem to have fallen out of one of the calmer moments of the Japanese cyberpunk horror flick Tetsuo: The Iron Man. Newcomers would be left hopelessly at sea were it not that the Tate has also assembled a huge amount of documentation, and arranged it in a fashion that is not just informative: it’s revelatory.

Programmes. Posters. Photographs. Snatches of 8mm. Mostly they record events in tiny rooms, the visitors all crammed together, everyone laughing, having a good time. Wall by wall, case by case, we begin to understand what we missed.

Paik was a collector, a collaborator, an impresario. He urged others to enact the strangest dreams. In New York, in 1964, a topless Charlotte Moorman saws away at her cello, and Alison Knowles sheds her panties and shoves them down the throat of the least talented art critic in the room.

But Paik had other dreams, too, which which for years he kept strictly to himself. As early as 1961 he had given up studying art and was avidly reading Popular Mechanics. In Tokyo, with the engineer Shuya Abe, he co-invented the Paik-Abe Video Synthesizer. This added single-colour channels to broadcast images in real time, distorted, colorised, and superimposed multiple images, and was in essence the technology that would soon give Top of the Pops and the MTV music channel their visual signature.

Paik’s use of TV as a medium is now what everyone most remembers about him, thanks mostly to his monumental “matrices”: sculptural video collages assembled using steel gantries and neon tubing and multiple cathode-ray televisions. There’s a late example here called Internet Dream (1994), and nearby, a recreation of the video installation Sistine Chapel, which in 1993 graced the pavilion of a newly-unified Germany at the Venice Biennale. Thrown across walls and ceiling by TV projectors, disembodied David Bowies and Janis Joplins, Lou Reeds and Ryuichi Sakamotos jostle for space with parties of Gobi desert Mongolians. It’s intoxicating. Dated. Kitsch. It’s the fruit both in flower and in rot.

“Thanks to Paik,” he wrote about himself (never a good sign) ” we discover that our entire world can become sound — or rather that it *is* sound… he does away with structure once and for all.”

And, oh dear, just look where that liquefaction has led. By giving us permission to create, Paik stripped away the structures that let us receive, appreciate, and judge. His mentor John Cage did much the same for music. And around Cage and Paik, Moorman and Beuys swirled a loose, revolutionary band of brothers and sisters who, under the banner of a movement called Fluxus, abandoned the commodified single art object and sought to create democratic art; an art of the everyday.

The idea that audiences also knew something about art filled these self-appointed shamans with impatience. The audience’s ideas were third-hand, third-rate, bourgeois prisons from which they might yet be liberated.

Liberated into what, though? Into boredom? Into consumption? All you can do with this work is participate in it. Swallow it. Go see In Real Life, Olafur Eliasson’s collection of kid-friendly novelties, if you want to see where this attitude leads. It runs next door till January 5.

As I left Paik’s show, I paused by a wall-mounted TV, where pianist Manon-Liu Winter plays her own composition on Paik’s prepared piano (now too fragile to travel). The one with the barbed wire, whose keyboard once triggered sirens, heaters, ventilators and tape recorders.

Now, though, it’s just a ruined piano. Winter picks her way across its atrocious keyboard like Jack Skellington, trying to discover the secret of Christmas by measuring the presents under the tree with a tape measure. This is indeed a revelatory exhibition — but you may come away liking Paik less.

Nothing to do except try not to die

Moving to Mars for New Scientist, 18 October 2019

Step into Moving to Mars, an exhibition of Mars mission and colony design at London’s Design Museum, and you are confronted, immediately, with some very good reasons not to move there. Minatory glowing wall texts announce that Mars was not made for you; that there is no life and precious little water; that, clad in a space suit, you will never touch, taste or smell the planet you now call “home”. As Lisa Grossman wrote for New Scientist a couple of years ago, “What’s different about Mars is that there is nothing to do there except try not to die.”

It’s an odd beginning for such an up-beat and celebratory show, but it provides some valuable dark ground against which the rest of the show can sparkle — a show that is, as its chief curator Justin McGuirk remarks, “not about Mars; this is an exhibition about people.”

Next up: a quick yet lucid dash through what the science-fiction writer Kim Stanley Robinson calls “the history of Mars in the human mind”. A Babylonian clay tablet and a Greek vase speak to our early cosmological ideas about the planets; a poster for the film Total Recall (the good one, from 1990), reminds us of Mars’s psychological menace.

The bulk of the show focuses on our current plans for the red planet. There are real space suits and models of real rovers, maquettes of 3D-printed Martian settlements and prototypes of Mars-appropriate clothing and furniture. Mission architectures and engineering sketches line the walls. Real hammers meant for the International Space Station (hollow, and loaded with ball bearings to increase their utility in zero-gravity) are wall-mounted beside a nifty low-gravity table that has yet to leave, and may indeed never leave, Earth. This, of course, is the great strength of approaching science through design: reality and speculation can be given equal visual weight, drawing us into an informed conversation about what it is we actually want from the future. Some readers may remember a tremendous touring exhibition, Hello Robot in 2017, which did much the same for robotics and artificial intelligence.

Half way round the show, I relaxed in a fully realised Martian living pod by the international design firm Hassell and their engineering partners Eckersley O’Callaghan. They’d assembled this as part of NASA’s 3D-Printed Habitat Challenge — the agency’s programme to develop habitat ideas for deep space exploration — and it combines economy, recycling, efficiency and comfort in surprising ways. Xavier De Kestelier, Hassell’s head of design technology and innovation, was on hand to show me around, and was particularly proud of the chairs here, which are are made of recycled packaging: “The more you eat, the more you sit!”

So much for the promise of Martian living. The profound limitations of that life were brought home to me a working hydroponic system by Growstack. Its trays of delicious cress and lettuce reminded me, rather sharply, that for all the hype, we are still a very long way from being able to feed ourselves away from our home world. We’re still at the point, indeed, where a single sunflower and a single zinnia, blossoming aboard the ISS — the former in 2012, the latter in 2016 — still make headlines.

The Growstack exhibit and other materials about Martian horticulture also marked an important cultural shift, away from the strategic, militarised thinking that characterised early space exploration in the Cold War, and towards more humane, more practical questions about how one lives an ordinary life in such extraordinary, and extraordinarily limited, environments.

It’s no surprise that the Russian were thinking seriously about these questions long before the rest of us, and it was good to see Russian space cultures given their due in this impressively international show. All through the 19th century, researchers for the Tsarist government tried to develop agriculture in mostly frozen and largely infertile Siberia. Well into the Soviet era, soil scientists undertook extreme expeditions over vast distances in pursuit of insane agricultural speculations. It shows up in their popular culture. “Hold on, geologist,” ran one pop song of 1951, “hold out, geologist, you are brother of the wind and sun!” And then there are the films of Pavel Vladimirovich Klushantsev, born 1910 in St Petersburg.

Klushantsev’s documentary Road to the Stars (1957), a meticulous, scientifically accurate vision to the physics, engineering, ergonomics of space travel, was followed seven years later by Moon (1965), describing the exploration, mining, settlement and domestication of a new land. Both films feature succulent gardens glistening under space domes, and workers eager to tend them, and bowls full of peaches beside every workstation, offering a little, literal taste of home.

I was delighted to see here a screen showing *Mars* (1968), a much less celebrated effort — Klushantsev’s saturated, multicoloured vision of man on the Red Planet. It’s the film with the dog in the spacesuit: an image people who’ve never heard of this director treasure for its kitsch value. It’s the film that earned him a telegram which read: “Due to the low quality of your work, we hereby inform you that we are terminating your contract with the studio.”

So much for the Soviet imagination.

But other cultures, each with their own deep, historical motivations, have since stepped up with plans to settle Mars. My favourites projects originate in the Middle East, where subterranean irrigation canals were greening the desert a full millennium before the astronomer Percival Lowell thought he spotted similar structures on Mars. (The underground networks called khettaras in Morocco irrigated much of its northern oasis region right up until the early 1970s, when government policies began to favour dam construction.)

Having raised major cities in one of the most inhospitable regions on Earth — and this in less than a generation — we should hardly be surprised that the rulers of the United Arab Emirates believe it’s feasible to establish a human settlement on Mars by 2117. A development hub, “Mars Scientific City”, is scheduled to open in Dubai in the next three to four years, and will feature a laboratory that will simulate the red planet’s terrain and harsh environment. It will be, I suppose, a sort of extension of the 520-day Mars 500 simulation that in 2011 sent six volunteers on a round trip to the Red Planet without stepping out of the Russian Institute for Biomedical Problems in Moscow.

The playfulness of “Martian thinking” is quite properly reflected in this playful and family-orientated exhibition. The point, made very well here, is that this play, this freedom from strictures and established lines of thought, is essential to good design. Space forces you to work from first principles. It forces you to think about mass, and transport, and utility, and reusability. And I don’t think it’s much of a coincidence that Eleanor Watson, the assistant curator on this show, has been chosen to curate this year’s Global Grad Show, which in November will be bringing the most innovative new design thinking to Dubai — a city which, in contending with its own set of environmental extremes, often feels half way to Mars already.

As I was leaving Moving to Mars I was drawn up short by what looked like some cycling gear. Anna Talvi, a graduate of the Royal College of Art in London, has constructed her flesh-hugging clothing to act as a sort of “wearable gym” to counter the muscle wasting and bone loss caused by living in low gravity. She has also tried to tackle the serious psychological challenges of space exploration, by permeating her fabrics with comforting scents. Her X.Earth perfumed gloves “will bring you back to your Earth-memory place at the speed of thought”, with the the smell of freshly cut grass, say, or the smell of your favourite horse.

Those gloves, even more than that hydroponically grown lettuce, brought home to me the sheer hideousness of space exploration. It’s no accident that this year’s most ambitious science fiction movies, Aniara and Ad Astra, have both focused on the impossible mental and spiritual toll we’d suffer, were we ever to swap our home planet for a life of manufactured monotony.

There’s a new realism creeping into our ideas of living off-world, along with a resurgence of optimism and possibility. And this is good. We need light and shade as we plan our next great adventure. How else can we ever hope to become Martian?