Cutting up the sky

Reading A Scheme of Heaven: Astrology and the Birth of Science by Alexander Boxer
for the Spectator, 18 January 2020

Look up at sky on a clear night. This is not an astrological game. (Indeed, the experiment’s more impressive if you don’t know one zodiacal pattern from another, and rely solely on your wits.) In a matter of seconds, you will find patterns among the stars.

We can pretty much apprehend up to five objects (pennies, points of light, what-have-you) at a single glance. Totting up more than five objects, however, takes work. It means looking for groups, lines, patterns, symmetries, boundaries.

The ancients cut up the sky into figures, all those aeons ago, for the same reason we each cut up the sky within moments of gazing at it: because if we didn’t, we wouldn’t be able to comprehend the sky at all.

Our pattern-finding ability can get out of hand. During his Nobel lecture in 1973 the zoologist Konrad Lorenz recalled how he once :”… mistook a mill for a sternwheel steamer. A vessel was anchored on the banks of the Danube near Budapest. It had a little smoking funnel and at its stern an enormous slowly-turning paddle-wheel.”

Some false patterns persist. Some even flourish. And the brighter and more intellectually ambitious you are, the likelier you are to be suckered. John Dee, Queen Elizabeth’s court philosopher, owned the country’s largest library (it dwarfed any you would find at Oxford or Cambridge). His attempt to tie up all that knowledge in a single divine system drove him into the arms of angels — or at any rate, into the arms of the “scrier” Edward Kelley, whose prodigious output of symbolic tables of course could be read in such a way as to reveal fragments of esoteric wisdom.

This, I suspect, is what most of us think about astrology: that it was a fanciful misconception about the world that flourished in times of widespread superstition and ignorance, and did not, could not, survive advances in mathematics and science.

Alexander Boxer is out to show how wrong that picture is, and A Scheme of Heaven will make you fall in love with astrology, even as it extinguishes any niggling suspicion that it might actually work.

Boxer, a physicist and historian, kindles our admiration for the earliest astronomers. My favourite among his many jaw-dropping stories is the discovery of the precession of the equinoxes. This is the process by which the sun, each mid-spring and mid-autumn, rises at a fractionally different spot in the sky each year. It takes 26,000 years to make a full revolution of the zodiac — a tiny motion first detected by Hipparchus around 130 BC. And of course Hipparchus, to make this observation at all, “had to rely on the accuracy of stargazers who would have seemed ancient even to him.”

In short, a had a library card. And we know that such libraries existed because the “astronomical diaries” from the Assyrian library at Nineveh stretch from 652BC to 61BC, representing possibly the longest continuous research program ever undertaken in human history.

Which makes astrology not too shoddy, in my humble estimation. Boxer goes much further, dubbing it “the ancient world’s most ambitious applied mathematics problem.”

For as long as lives depend on the growth cycles of plants, the stars will, in a very general sense, dictate the destiny of our species. How far can we push this idea before it tips into absurdity? The answer is not immediately obvious, since pretty much any scheme we dream up will fit some conjunction or arrangement of the skies.

As civilisations become richer and more various, the number and variety of historical events increases, as does the chance that some event will coincide with some planetary conjunction. Around the year 1400, the French Catholic cardinal Pierre D’Ailly concluded his astrological history of the world with a warning that the Antichrist could be expected to arrive in the year 1789, which of course turned out to be the year of the French revolution.

But with every spooky correlation comes an even larger horde of absurdities and fatuities. Today, using a machine-learning algorithm, Boxer shows that “it’s possible to devise a model that perfectlly mimics Bitcoin’s price history and that takes, as its input data, nothing more than the zodiac signs of the planets on any given day.”

The Polish science fiction writer Stanislaw Lem explored this territory in his novel The Chain of Chance: “We now live in such a dense world of random chance,” he wrote in 1975, “in a molecular and chaotic gas whose ‘improbabilities’ are amazing only to the individual human atoms.” And this, I suppose, is why astrology eventually abandoned the business of describing whole cultures and nations (a task now handed over to economics, another largely ineffectual big-number narrative) and now, in its twilight, serves merely to gull individuals.

Astrology, to work at all, must assume that human affairs are predestined. It cannot, in the long run, survive the notion of free will. Christianity did for astrology, not because it defeated a superstition, but because it rendered moot astrology’s iron bonds of logic.

“Today,” writes Boxer, “there’s no need to root and rummage for incidental correlations. Modern machine-learning algorithms are correlation monsters. They can make pretty much any signal correlate with any other.”

We are bewitched by big data, and imagine it is something new. We are ever-indulgent towards economists who cannot even spot a global crash. We credulously conform to every algorithmically justified norm. Are we as credulous, then, as those who once took astrological advice as seriously as a medical diagnosis? Oh, for sure.

At least our forebears could say they were having to feel their way in the dark. The statistical tools you need to sort real correlations from pretty patterns weren’t developed until the late nineteenth century. What’s our excuse?

“Those of us who are enthusiastic about the promise of numerical data to unlock the secrets of ourselves and our world,” Boxer writes, “would do well simply to acknowledge that others have come this way before.”

“The English expedition of 1919 is to blame for this whole misery”

Four books to celebrate the centenary of  Eddington’s 1919 eclipse observations. For The Spectator, 11 May 2019.

Einstein’s War: How relativity triumphed amid the vicious nationalism of World War I
Matthew Stanley
Dutton

Gravity’s Century: From Einstein’s eclipse to images of black holes
Ron Cowen
Harvard University Press

No Shadow of a Doubt
Daniel Kennefick
Princeton University Press

Einstein’s Wife: The real story of Mileva Einstein-Maric
Allen Esterson and David C Cassidy; contribution by Ruth Lewin Sime.
MIT Press

On 6 November 1919, at a joint meeting of the Royal Astronomical Society and the Royal Society, held at London’s Burlington House, the stars went all askew in the heavens.
That, anyway, was the rhetorical flourish with which the New York Times hailed the announcement of the results of a pair of astronomical expeditions conducted in 1919, after the Armistice but before the official end of the Great War. One expedition, led by Arthur Stanley Eddington, assistant to the Astronomer Royal, had repaired to the plantation island of Principe off the coast of West Africa; the other, led by Andrew Crommelin, who worked at the Royal Greenwich Observatory, headed to a racecourse in Brazil. Together, in the few minutes afforded by the 29 May solar eclipse, the teams used telescopes to photograph shifts in the apparent location of stars as the edge of the sun approached them.

The possibility that a heavy body like the sun might cause some distortion in the appearance of the star field was not particularly outlandish. Newton, who had assigned “corpuscles” of light some tiny mass, supposed that such a massive body might draw light in like a lens, though he imagined the effect was too slight to be observable.

The degree of distortion the Eddington expeditions hoped to observe was something else again. 1.75 arc-seconds is roughly the angle subtended by a coin, a couple of miles away: a fine observation, but not impossible at the time. Only the theory of the German-born physicist Albert Einstein — respected well enough at home but little known to the Anglophone world — would explain such a (relatively) large distortion, and Eddington’s confirmation of his hypothesis brought the “famous German physician” (as the New York Times would have it) instant celebrity.

“The English expedition of 1919 is ultimately to blame for this whole misery, by which the general masses seized possession of me,” Einstein once remarked; but he was not so very sorry for the attention. Forget the usual image of Einstein the loveable old eccentric. Picture instead a forty-year-old who, when he steps into a room, literally causes women to faint. People wanted his opinions even about stupid things. And for years, if anyone said anything wise, within a few months their words were being attributed to Einstein.

“Why is it that no one understands me and everyone likes me?” Einstein wondered. His appeal lay in his supposed incomprehensibility. Charlie Chaplin understood: “They cheer me because they all understand me,” he remarked, accompanying the theoretical physicist to a film premiere, “and they cheer you because no one understands you.”

Several books serve to mark the centenary of the 1919 eclipse observations. Though their aims diverge, they all to some degree capture the likeness of Einstein the man, messy personal life and all, while rendering his physics a little bit more comprehensible to the rest of us. Each successfully negotiates the single besetting difficulty facing books of this sort, namely the way science lends itself to bad history.

Science uses its past as an object lesson, clearing all the human messiness away to leave the ideas standing. History, on the other hand factors in as much human messiness as possible to show how the business of science is as contingent and dramatic as any other human activity.

While dealing with human matters, some ambiguity over causes and effects is welcome. There are two sides to every story, and so on and so forth: any less nuanced approach seems suspiciously moralistic. One need only look at the way various commentators have interpreted Einstein’s relationship with his first wife.

Einstein was, by the end of their failing marriage, notoriously horrible to Mileva Einstein-Maric; this in spite of their great personal and intellectual closeness as first-year physics students at the Federal Swiss Polytechnic. Einstein once reassured Elsa Lowenthal, his cousin and second-wife-to-be, that “I treat my wife as an employee I can not fire.” (Why Elsa, reading that, didn’t run a mile, is not recorded.)

Albert was a bad husband. His wife was a mathematician. Therefore Albert stole his theory of special relativity from Mileva. This shibboleth, bandied about since the 1970s, is a sort of of evil twin of whig history, distorted by teleology, anachronism and present-mindedness. It does no one any favours. The three separately authored parts of Einstein’s Wife: The real story of Mileva Einstein-Maric unpick the myth of Mileva’s influence over Albert, while increasing, rather than diminishing, our interest in and admiration of the woman herself. It’s a hard job to do well, without preciousness or special pleading, especially in today’s resentment-ridden and over-sensitive political climate, and the book is an impressive, compassionate accomplishment.
Matthew Stanley’s Einstein’s War, on the other hand, tips ever so slightly in the other direction, towards the simplistic and the didactic. His intentions, however, are benign — he is here to praise Einstein and Eddington and their fellows, not bury them — and his slightly on-the-nose style is ultimately mandated by the sheer scale of what he is trying to do, for he succeeds in wrapping the global, national and scientific politics of an era up in a compelling story of one man’s wild theory, lucidly sketched, and its experimental confirmation in the unlikeliest and most exotic circumstances.

The world science studies is truly a blooming, buzzing confusion. It is not in the least bit causal, in the ordinary human sense. Far from there being a paucity of good stories in science, there are a limitless number of perfectly valid, perfectly accurate, perfectly true stories, all describing the same phenomenon from different points of view.

Understanding the stories abroad in the physical sciences at the fin de siecle, seeing which ones Einstein adopted, why he adopted them, and why, in some cases, he swapped them for others, certainly doesn’t make his theorising easy. But it does give us a gut sense of why he was so baffled by the public’s response to his work. The moment we are able to put him in the context of co-workers, peers and friends, we see that Einstein was perfecting classical physics, not overthrowing it, and that his supposedly peculiar theory of relativity — as the man said himself –“harmonizes with every possible outlook of philosophy and does not interfere with being an idealist or materialist, pragmatist or whatever else one likes.”

In science, we need simplification. We welcome a didactic account. Choices must be made, and held to. Gravity’s Century by the science writer Ron Cowen is the most condensed of the books mentioned here; it frequently runs right up to the limit of how far complex ideas can be compressed without slipping into unavoidable falsehood. I reckon I spotted a couple of questionable interpretations. But these were so minor as to be hardly more than matters of taste, when set against Cowen’s overall achievement. This is as good a short introduction to Einstein’s thought as one could wish for. It even contrives to discuss confirmatory experiments and observations whose final results were only announced as I was writing this piece.

No Shadow of a Doubt is more ponderous, but for good reason: the author Daniel Kennefick, an astrophysicist and historian of science, is out to defend the astronomer Eddington against criticisms more serious, more detailed, and framed more conscientiously, than any thrown at that cad Einstein.

Eddington was an English pacifist and internationalist who made no bones about wanting his eclipse observations to champion the theories of a German-born physicist, even as jingoism reached its crescendo on both sides of the Great War. Given the sheer bloody difficulty of the observations themselves, and considering the political inflection given them by the man orchestrating the work, are Eddington’s results to be trusted?

Kennefick is adamant that they are, modern naysayers to the contrary, and in conclusion to his always insightful biography, he says something interesting about the way historians, and especially historians of science, tend to underestimate the past. “Scientists regard continuous improvement in measurement as a hallmark of science that is unremarkable except where it is absent,” he observes. “If it is absent, it tells us nothing except that someone involved has behaved in a way that is unscientific or incompetent, or both.” But, Kennefick observes, such improvement is only possible with practice — and eclipses come round too infrequently for practice to make much difference. Contemporary attempts to recreate Eddington’s observations face the exact same challenges Eddington did, and “it seems, as one might expect, that the teams who took and handled the data knew best after all.”

It was Einstein’s peculiar fate that his reputation for intellectual and personal weirdness has concealed the architectural elegance of his work. Higher-order explanations of general relativity have become clichés of science fiction. The way massive bodies bend spacetime like a rubber sheet is an image that saturates elementary science classes, to the point of tedium.

Einstein hated those rubber-sheet metaphors for a different reason. “Since the mathematicians pounced on the relativity theory,” he complained, “I no longer understand it myself.” We play about with thoughts of bouncy sheets. Einstein had to understand their behaviours mathematically in four dimensions (three of space and one of time), crunching equations so radically non-linear, their results would change the value of the numbers originally put into them in feedback loops that drove the man out of his mind. “Never in my life have I tormented myself anything like this,” he moaned.

For the rest of us, however, A little, prophylactic exposure to Einstein’s actual work pays huge dividends. It sweeps some of the weirdness away and reveals Einstein’s actual achievement: theories that set all the forces above the atomic scale dancing with an elegance Isaac Newton, founding father of classical physics, would have half-recognised, and wholly admired.

 

The three-dimensional page

Visiting Thinking 3D: Leonardo to the present at Oxford’s Weston Library for the Financial Times, 20 March 2019

Exhibitions hitch themselves to the 500th anniversary of Leonardo da Vinci at their peril. How do you do justice to a man whose life’s work provides the soundtrack to your entire culture? Leonardo dabbled his way into every corner of intellectual endeavour, and carved out several tasty new corners into the bargain. For heaven’s sake, he dreamt up a glass vessel to demonstrate the dynamics of fluid flow in the aortic valve of the human heart: modern confirmation that he was right (did you doubt it?) had to wait for the cardiologist Robin Choudhury and a paper written in 2014.

Daryl Green and Laura Moretti, curators of Thinking 3D at Oxford’s Weston Library, are wise to park this particular story at the far end of their delicate, nuanced, spiderweb of an exhibition into how artists and scientists, from Leonardo to now, have learned to convey three-dimensional objects on the page.

Indeed they do very good job of keeping You Know Who contained. This is a show made up of books, mostly, and Leonardo came too soon to take full advantage of print. He was, anyway, far too jealous of his own work to consign it to the relatively crude reproductive technologies of his day. Only one of his drawings exists in printed form — a stellated dodecahedron, drawn for his friend Luca Pacioli’s De Divina Proportione of 1509. It’s here for the viewing, alongside other contemporary attempts at geometrical drawing. Next to Leonardo, they are hardly more than doodles.

A few of Leonardo’s actual drawings — the revolving series here is drawn from the Royal Collection and the British Library — served to provoke, more than to inspire, the advances in 3D visualisation that followed. In a couple of months the aortic valve story will be pulled from the show, its place taken by astrophysicist Steven Balbus’s attempts to visualise black holes. (There’s a lot of ground to cover, and very little room, so the exhibition will be changing some elements regularly during the run.) When that happens, will Leonardo’s presence in this exhibition begin to feel gratuitous? Probably not: Leonardo is the ultimate Man Who Came to Dinner: once put inside your head there’s no getting rid of him.

Thinking 3D is more than just this exhibition: the year-long project promises events, talks, conferences and workshops, not to mention satellite shows. (Under the skin: illustrating the human body, which just ended at the Royal College of Physicians in London, was one of these.) The more one learns about the project, the more it resembles Stephen Leacock’s Lord Ronald, who flung himself upon his horse and rode madly off in all directions — and the more impressive the coherence Green and Moretti have achieved here.

There are some carefully selected geegaws. A stereoscope through which one can study Arthur Thomson stereographic Anatomy of the Human Eye, published in 1912. The nation’s first look at Bill Gates’s Codescope, an interactive kiosk with a touch screen that lets you explore the Codex Leicester, a notebook of Leonardo’s that Gates bought in 1994. Even a shelf full of 3D-printed objects you are welcome to fondle, like Linus with his security blanket, as you wander around the exhibition. This last jape works better than you’d think: by relating vision to touch, it makes us properly aware of all the mental tricks we have to perform, in order to to realise 3D forms in pictures.

But books are the meat of the matter: arranged chronologically along one wall, and under glass in displays that show how the same theme has been handled at different times. Start at the clean, complex lines of the dodecahedron and pass, via architecture (the coliseum) and astronomy (the Moon) to the fleshy ghastliness of the human eyeball.

Conveying depth by drawing makes geometry comprehensible. It also, and in particular, transforms three areas of fundamental intellectual enquiry: anatomy, architecture, and astronomy.

Today, when we think of 3D visualisation, we think first of architecture. (It’s an association forged, in large part, in the toils of countless videogames: never mind the plot, gawp at all that visionary pixelcrete!). But because architecture operates at a more-or-less human-scale, it’s actually been rather slow to pick up on the power of 3D visualisation. With intuition and craft skill to draw upon, who needs axonometry? The builders of the great Mediaeval cathedrals managed quite happily without any such hifalutin drawing techniques, and it wasn’t until Auguste Choisy’s Histoire de l’architecture of 1899 that a drawing style that had already transformed carpentry, machinery, and military architecture finally found favour with architects. (Arguably, the profession has yet to come down off the high this occasioned. Witness the number of large buildings that look, for all their bulk, like scale models, their shapes making sense only from the most arbitrary angles.)

Where the scale is too small or too large for intuition and common sense to work, 3D visualisation has been most useful, and most beautiful. Andreas Vesalius’s De humani corporis fabrica librorum epitome (1543) stands here for an entire genre of “fugitive sheets” — compendiums of exquisite anatomical drawings with layered flaps, peeled back by the reader to reveal the layers of the body as one might discover them during a dissection. Because these documents were practical surgical guides, they received rough treatment, and hardly any survive. Those that do (though not the one here, thank God) are often covered with mysterious stains.

Less gruesome, but at the same time less immediately communicative, are the various attempts here to render the cosmos on paper. Robert Fludd’s black square from his Utriusque Cosmi (1617-21), depicts the void immediately prior to creation. Et sic in infinitum (“And so on to infinity”) run the words on each side of this eloquent blank.

Thinking 3D explores territories where words tangle incoherently and only pictures will suffice — then leaps giggling into a void where rational enquiry collapses and only artworks and acts of mischief like Fludd’s manage to convey anything at all. All this in a space hardly bigger than two average living rooms. It’s a show that repays — indeed, demands — patience. Put in the requisite effort, though, and you’ll find it full of wonders.

A place that exists only in moonlight

Visiting Turner Contemporary, Margate and Katie Paterson’s new show for the Financial Times, 30 January 2019

Cyril Connolly, literary lion of the 1930s, reckoned that the surest way of killing off writers was to baff on about their promise. Calling artists “visionary” might have the same effect now.

A new show at Turner Contemporary in Margate juxtaposes JMW Turner watercolours with work by Scottish-born conceptual artist Katie Paterson. The fit seems reasonable. Both artists are fascinated by light. But Turner was a visionary artist, while Paterson, born 1981, is not.. Her value (and it’s considerable) lies elsewhere.

Turner’s deft atmospheric squiggles hang next to an airfreight parcel, a shelving unit full of light bulbs and several thousand photographic slides depicting nothing. Paterson defends the wheeze with spirit: “I don’t find my work itself scientific,” she writes, on wall information at the head of the exhibition. “It deals with phenomena and matter, space-time, colour and light, the natural world as materials. Like Turner’s work, it is rooted in sensory experience.”

True, you can find sensory experience if you go looking for it. Her 2007 piece “Earth-Moon-Earth” used Morse code to bounce the score of Beethoven’s Moonlight Sonata off the Moon. An automated piano performs the rather gappy version that survived the round-trip. The moment you wonder where the missing notes went, you enter dreamland. 289 replacement light bulbs sit ready to power Light bulb to Simulate Moonlight (2008) through the course of an average human lifetime. They are tuned to exactly recreate the effulgence of a full moon. I stepped into the installation expecting nothing, only to be propelled in my imagination back to the night walks of my childhood.

But sensory experience doesn’t sit at the heart of every Paterson work, or even many of them.

There’s lots of precision. “It needs to be accurate to be imagined,” says the artist of a 2008 wheeze in which people phoned up Iceland’s Vatnajökull glacier to hear it melting in real time. If all you got was the artist splashing about in her kitchen sink, what would be the point of the work?

Her literalistic approach pushes Paterson into entertaining contortions. Alongside her concern for accuracy and truth, I think we should add a love of logistics. Second Moon (2013-14), a fragment of the Moon sent on a year-long journey counterclockwise around the earth via air freight, is a game of scale in which human and astronomical perspectives vie for contention. Other projects haven’t gone as smoothly. For five years Paterson sent letters of condolence to friendly astronomers, marking the deaths of individual stars. Dying Star Letters (2011-present) threatened to overwhelm her, however as improvements in observation caused her inbox to overflow with stellar deaths.

A core of necessary failure is present in many of Paterson’s pieces. Some projects are threatened by technological obsolescence. The 2,200 slides of empty space that make up The History of Darkness (begun in 2010) can only be added to for as long as someone makes slides (they’re already difficult to get hold of). A brand-new piece for this exhibition is a spinning wheel depicting the overall colour balance of the universe throughout its history. Its inks are pinpoint-accurate for now, but in two years’ time, when they have faded ever so slightly, what will The Cosmic Spectrum (2019) be worth?

Turner never had this problem. His criterion of truth was different. Paterson cares about measurement. He cared about witness. An honestly witnessed play of light against a cloud can be achieved through the right squiggle. An accurate measurement of the same phenomenon must be the collaborative work of meteorologists, atmospheric scientists, astronomers, colour scientists, and who knows how many other specialists, with Paterson riding everyone’s coat-tails as a sort of tourist.

As a foil for Paterson, we need someone who invents the world out of words, who thinks in conceits and metaphors, and who explores them with an almost naive diligence.

We need John Donne. “On a round ball / A workman that hath copies by, can lay / An Europe, Afric, and an Asia, / And quickly make that, which was nothing, all”. These lines from A Valediction: of Weeping come far closer to defining Paterson’s practice than anything Turner can offer. Donne’s Holy Sonnets, especially, are full of the sorts of questions that power Paterson’s art. “Thou hast made me, and shall thy work decay?” “Why are we by all creatures waited on?” “What if this present were the world’s last night?”

Mounted on the wall of Turner Contemporary, Paterson’s ideas include “The universe rewound and played back in real time;” “A wave machine hidden inside the sea;” “A foghorn set off at sea every time a star dies.” Not content with setting down her ideas in words (though you can buy a book of them here, printed in ink mixed with ground-up meteorite), Paterson tries to make the more doable ones actually happen. Her artworks are the koans of Zen meditative practice made real — or as real as the world allows.

Paterson’s out to celebrate the hugeness of our imaginations, while recognising our physical and temporal littleness. She’s not visionary; she’s metaphysical. The show’s terrific, but Turner’s not the right foil.