Chemistry off the leash

Reading Sarah Rushton’s The Science of Life and Death in Frankenstein for New Scientist, 27 October 2021

In 1817, in a book entitled Experiments on Life and its Basic Forces, the German natural philosopher Carl August Weinhold explained how he had removed the brain from a living kitten, and then inserted a mixture of zinc and silver into the empty skull. The animal “raised its head, opened its eyes, looked straight ahead with a glazed expression, tried to creep, collapsed several times, got up again, with obvious effort, hobbled about, and then fell down exhausted.”

The following year, Mary Shelley’s Frankenstein captivated a public not at all startled by its themes, but hungry for horripilating thrills and avid for the author’s take on arguably the most pressing scientific issue of the day. What was the nature of this strange zone that had opened up between the worlds of the living and the dead?

Three developments had muddied this once obvious and clear divide: in revolutionary France, the flickers of life exhibited by freshly guillotined heads; in Edinburgh, the black market in fresh (and therefore dissectable) corpses; and on the banks of busy British rivers, attempts (encouraged by the Royal Humane Society) to breathe life into the recently drowned.

Ruston covers this familiar territory well, then goes much further, revealing Mary Shelley’s superb and iron grip on the scientific issues of her day. Frankenstein was written just as life’s material basis was emerging. Properties once considered unique to living things were turning out to be common to all matter, both living and unliving. Ideas about electricity offer a startling example.

For more than a decade, from 1780 to the early 1790s, it had seemed to researchers that animal life was driven by a newly discovered life source, dubbed ‘animal electricity’. This was a notion cooked up by the Bologna-born physician Luigi Galvani to explain a discovery he had made in 1780 with his wife Lucia. They had found that the muscles of dead frogs’ legs twitch when struck by an electrical spark. Galvani concluded that living animals possessed their own kind of electricity. The distinction between ‘animal electricity’ and metallic electricity didn’t hold for long, however. By placing discs of different metals on his tongue, and feeling the jolt, Volta showed that electricity flows between two metals through biological tissue.

Galvani’s nephew, Giovanni Aldini, took these experiments further in spectacular, theatrical events in which corpses of hanged murderers attempted to stand or sit up, opened their eyes, clenched their fists, raised their arms and beat their hands violently against the table.

As Ruston points out, Frankenstein’s anguished description of the moment his Creature awakes “sounds very like the description of Aldini’s attempts to resuscitate 26-year-old George Forster”, hanged for the murder of his wife and child in January 1803.

Frankenstein cleverly clouds the issue of exactly what form of electricity animates the creature’s corpse. Indeed, the book (unlike the films) is much more interested in the Creature’s chemical composition than in its animation by a spark.

There are, Ruston shows, many echoes of Humphry Davy’s 1802 Course of Chemistry in Frankenstein. It’s not for nothing that Frankenstein’s tutor Professor Waldman tells him that chemists “have acquired new and almost unlimited powers”.

An even more intriguing contemporary development was the ongoing debate between the surgeon John Abernethy and his student William Lawrence in the Royal College of Surgeons. Abernethy claimed that electricity was the “vital principle” underpinning the behaviour of organic matter. Nonsense, said Lawrence, who saw in living things a principle of organisation. Lawrence was an early materialist, and his patent atheism horrified many. The Shelleys were friendly with Lawrence, and helped him weather the scandal engulfing him.

The Science of Life and Death is both an excellent introduction and a serious contribution to understanding Frankenstein. Through Ruston’s eyes, we see how the first science fiction novel captured the imagination of its public.



‘God knows what the Chymists mean by it’

Reading Antimony, Gold, and Jupiter’s Wolf: How the Elements Were Named, by
Peter Wothers, for The Spectator, 14 December 2019

Here’s how the element antimony got its name. Once upon a time (according to the 17th-century apothecary Pierre Pomet), a German monk (moine in French) noticed its purgative effects in animals. Fancying himself as a physician, he fed it to “his own Fraternity… but his Experiment succeeded so ill that every one who took of it died. This therefore was the reason of this Mineral being call’d Antimony, as being destructive of the Monks.”

If this sounds far-fetched, the Cambridge chemist Peter Wothers has other stories for you to choose from, each more outlandish than the last. Keep up: we have 93 more elements to get through, and they’re just the ones that occur naturally on Earth. They each have a history, a reputation and in some cases a folklore. To investigate their names is to evoke histories that are only intermittently scientific. A lot of this enchanting, eccentric book is about mining and piss.

The mining:

There was no reliable lighting or ventilation; the mines could collapse at any point and crush the miners; they could be poisoned by invisible vapours or blown up by the ignition of pockets of flammable gas. Add to this the stifling heat and the fact that some of the minerals themselves were poisonous and corrosive, and it really must have seemed to the miners that they were venturing into hell.

Above ground, there were other difficulties. How to spot the new stuff? What to make of it? How to distinguish it from all the other stuff? It was a job that drove men spare. In a 1657 Physical Dictionary the entry for Sulphur Philosophorum states simply: ‘God knows what the Chymists mean by it.’

Today we manufacture elements, albeit briefly, in the lab. It’s a tidy process, with a tidy nomenclature. Copernicum, einsteinium berkelium: neologisms as orderly and unevocative as car marques.

The more familiar elements have names that evoke their history. Cobalt, found in
a mineral that used to burn and poison miners, is named for the imps that, according to the 16th-century German Georgius Agricola ‘idle about in the shafts and tunnels and really do nothing, although they pretend to be busy in all kinds of labour’. Nickel is kupfernickel, ‘the devil’s copper’, an ore that looked like valuable copper ore but, once hauled above the ground, appeared to have no value whatsoever.

In this account, technology leads and science follows. If you want to understand what oxygen is, for example, you first have to be able to make it. And Cornelius Drebbel, the maverick Dutch inventor, did make it, in 1620, 150 years before Joseph Priestley got in on the act. Drebbel had no idea what this enchanted stuff was, but he knew it sweetened the air in his submarine, which he demonstrated on the Thames before King James I. Again, if you want a good scientific understanding of alkalis, say, then you need soap, and lye so caustic that when a drunk toppled into a pit of the stuff ‘nothing of him was found but his Linnen Shirt, and the hardest Bones, as I had the Relation from a Credible Person, Professor of that Trade’. (This is Otto Tachenius, writing in 1677. There is lot of this sort of thing. Overwhelming in its detail as it can be, Antimony, Gold, and Jupiter’s Wolf is wickedly entertaining.)

Wothers does not care to hold the reader’s hand. From page 1 he’s getting his hands dirty with minerals and earths, metals and the aforementioned urine (without which the alchemists, wanting chloride, sodium, potassium and ammonia, would have been at a complete loss) and we have to wait till page 83 for a discussion of how the modern conception of elements was arrived at. The periodic table doesn’t arrive till page 201 (and then it’s Mendeleev’s first table, published in 1869). Henri Becquerel discovers radioactivity barely four pages before the end of the book. It’s a surprising strategy, and a successful one. Readers fall under the spell of the possibilities of matter well before they’re asked to wrangle with any of the more highfalutin chemical concepts.

In 1782, Louis-Bernard Guyton de Morveau published his Memoir upon Chemical Denominations, the Necessity of Improving the System, and the Rules for Attaining a Perfect Language. Countless idiosyncracies survived his reforms. But chemistry did begin to acquire an orderliness that made Mendeleev’s towering work a century later — relating elements to their atomic structure — a deal easier.

This story has an end. Chemistry as a discipline is now complete. All the major problems have been solved. There are no more great discoveries to be made. Every chemical reaction we do is another example of one we’ve already done. These days, chemists are technologists: they study spectrographs, and argue with astronomers about the composition of the atmospheres around planets orbiting distant stars; they tinker in biophysics labs, and have things to say about protein synthesis. The heroic era of chemical discovery — in which we may fondly recall Gottfried Leibniz extracting phosphorus from 13,140 litres of soldiers’ urine — is past. Only some evocative words remain; and Wothers unpacks them with infectious enthusiasm, and something which in certain lights looks very like love.

Mendeleev’s revenge


Visiting the exhibition Periodic Tales at Compton Verney for New Scientist, 27 October 2015

The haunting, slightly bilious yellow-green of uranium glass fascinated Victorian interior designers. Uranium metal glows green in ultraviolet light, and this property lends uranium glass a subtle yet compelling inner fire.

The Victorians made any number of knick-knacks out of the stuff. The exhibition Periodic Tales at Compton Verney – a stately home near Stratford-upon-Avon, UK, best known for its collection of British folk art – boasts a piano foot, an ornamental castor fashioned to spread the weight of the parlour piano.

It is mildly radioactive, which triggers all manner of safety protocols. “We installed it using special gloves,” says Penelope Sexton, the exhibition’s curator. “I shudder to think what any passing Victorian would have made of us.”

Sexton is leading Compton Verney’s long-term campaign to become a contemporary arts venue as well as a “grand day out” for visitors from London and central England.

Periodic Tales combines simple objects made from different elements – a tiny lead figurine from the Aegean islands is the oldest, dating from around 2500 BC – with art that draws contemporary mischief from Mendeleev’s world-changing periodic table of the elements of 1869.

Before modern chemistry, it was assumed that the properties of fundamental materials were innate and could be combined. By that logic, blending sulphur’s yellow and mercury’s sheen ought to have made gold. Mendeleev, a Russian chemist and inventor, spoiled that happy dream, codifying the elements we recognise today in a table that reflects a profound atomic reality we know to be true but cannot directly see.

To read the periodic table is to be confronted by how baffling the world is.

Solids, liquids and gases nestle against each other for reasons that cannot be unpicked by simply resorting to an intuitive understanding of the human-scale world. The queer thing about calling this show Periodic Tales is that there are no tales to tell, only a stunned acknowledgement that one can, in the same moment, both be handed the keys to the material world, and firmly locked out of ever intuiting it.

The artworks Sexton has chosen struggle for purchase. Simon Patterson’s periodic tables of celebrity are facile. And Cornelia Parker‘s circle of crushed silver ornaments is almost as pretty as a well-lit silver object would have been had she not crushed it in the first place. Maria Lalic‘s chrome mirrors are pure Ikea (pictured below).

Periodic Tales: all the elements of a splendid failure

But there are some stunning successes, too. The frames of John Newling‘s wall-mounted Value; Coin, Note and Eclipse (pictured at the start of this story) capture the alchemical transformation of a living plant into gold coinage, by way of pressed kale leaves and the judicious application of gold leaf. It is a narrative piece, rooted firmly in the safe ground of material production, value and exchange.

It is significant, I think, that other standout pieces also explore the way some elements are more or less effortlessly turned into cultural signs – quite literally in the case of Fiona Banner‘s neon Brackets (An Aside).

There is much else in the show worth seeing: Danny Lane‘s Blue Moon makes cobalt positively drinkable. And there’s plenty to think about: another work by Parker, Stolen Thunder, is a display of handkerchiefs stained by the tarnish rubbed off famous objects.

But the real draw – counter-intuitive though this is – is the necessary failure of the show. Mendeleev’s table is a masterpiece of objectivity. Its truth refuses to be anthropomorphised, moralised upon, or otherwise domesticated. Undaunted, Sexton brings us right to the edge of what art can do to communicate science.