An engine for understanding

Reading Fundamentals by Frank Wilczek for the Times, 2 January 2021

It’s not given to many of us to work at the bleeding edge of theoretical physics, discovering for ourselves the way the world really works.

The nearest most of us will ever get is the pop-science shelf, and this has been dominated for quite a while now by the lyrical outpourings of Italian theoretical physicist Carlo Rovelli. Rovelli’s upcoming one, Helgoland, promises to have his reader tearing across a universe made, not of particles, but of the relations between them.

It’s all too late, however: Frank Wilczek’s Fundamentals has gazzumped Rovelli handsomely, with a vision that replaces our classical idea of physical creation — “atoms and the void” — with one consisting entirely of spacetime, self-propagating fields and properties.

Born in 1951 and awarded the Nobel Prize in Physics in 2004 for figuring out why atoms don’t just fly apart, Wilczek is out to explain why “the history of Sweden is more complicated than the history of the universe”. The ingredients of the universe are surprisingly simple, but their fates, playing out through time in accordance with just a handful of rules, generate a world of unimaginable complexity, contingency and abundance. Measures of spin, charge and mass allow us to describe the whole of physical reality, but they won’t help us at all in depicting, say, the history of the royal house of Bernadotte.

Wilczek’s “ten keys to reality”, mentioned in his subtitle, aren’t to do with the 19 or so physical constants that exercised Martin Rees, the UK’s Astronomer Royal, in his 1990s pop-science heyday. The focus these days has shifted more to the spirit of things. When Wilczek describes the behaviour of electrons around an atom, for example, gone are the usual Böhr-ish mechanics, in which electrons leap from one nuclear orbit to another. Instead we get a vibrating cymbal, the music of the spheres, a poetic understanding of fields, and not a fragment of matter in sight.

So will you plump for the Wilzcek, or will you wait for the Rovelli? A false choice, of course; this is not a race. Popular cosmology is more like the jazz scene: the facts (figures, constants, models) are the standards everyone riffs off. After one or two exposures you find yourself returning for the individual performances: their poetry, their unique expression.

Wilczek’s ten keys are more like ten book ideas, exploring the spatial and temporal abundance of the universe; how it all began; the stubborn linearity of time; how it all will end. What should we make of his decision to have us swallow the whole of creation in one go?

In one respect this book was inevitable. It’s what people of Wilczek’s peculiar genius and standing do. There’s even a sly name for the effort: the philosopause. The implication here being that Wilczek has outlived his most productive years and is now pursuing philosophical speculations.

Wilzcek is not short of insights. His idea of what the scientific method consists of is refreshingly robust: a style of thinking that “combines the humble discipline of respecting the facts and learning from Nature with the systematic chutzpah of using what you think you’ve learned aggressively”. If you apply what you think you’ve discovered everywhere you can, even in situations that have nothing to do with your starting point, then, if it works, “you’ve discovered something useful; it it doesn’t, then you’ve learned something important.”

However, works of the philosopause are best judged on character. Richard Dawkins seems to have discovered, along with Johnny Rotten, that anger is an energy. Martin Rees has been possessed by the shade of that dutiful bureaucrat C P Snow. And in this case? Wilczek, so modest, so straight-dealing, so earnest in his desire to conciliate between science and the rest of culture, turns out to be a true visionary, writing — as his book gathers pace — a human testament to the moment when the discipline of physics, as we used to understand it, came to a stop.

Wilczek’s is the first generation whose intelligence — even at the far end of the bell-curve inhabited by genius — is insufficient to conceptualise its own scientific findings. Machines are even now taking over the work of hypothesis-making and interpretation. “The abilities of our machines to carry lengthy yet accurate calculations, to store massive amounts of information, and to learn by doing at an extremely fast pace,” Wilczek explains, “are already opening up qualitatively new paths toward understanding. They will move the frontier of knowledge in directions, and arrive at places, that unaided human brains can’t go.”

Or put it this way: physicists can pursue a Theory of Everything all they like. They’ll never find it, because if they did find it, they wouldn’t understand it.

Where does that leave physics? Where does that leave Wilczek? His response is gloriously matter-of-fact:

“… really, this should not come as fresh news. Humans themselves know many things that are not available to human consciousness, such as how to process visual information at incredible speeds, or how to make their bodies stay upright, walk and run.”

Right now physicists have come to the conclusion that the vast majority of mass in the universe reacts so weakly to the bits of creation we can see, we may never know its nature. Though Wilczek makes a brave stab at the problem of so-called “dark matter”, he is equally prepared to accept that a true explanation may prove incomprehensible.

Human intelligence turns out to be just one kind of engine for understanding. Wilzcek would have us nurture it and savour it, and not just for what it can do, but because it is uniquely ours.

How Charles Dickens became a man of science

Visiting Charles Dickens: Man of Science, at the Charles Dickens Museum, London for New Scientist, 16 June 2018

EVEN as he became the most celebrated and prolific author, the most energetic editor and the most influential political and social campaigner of his day, Charles Dickens was well aware of the science around him. Indeed, he took inspiration from it, and was even engaged in promoting and explaining it.

The trouble is, in an effort to build a show around this notion, the Charles Dickens Museum has fixated almost entirely on its hero’s friendships. Because Dickens knew everybody, the show struggles to find its focus. Even with a following wind, it is hard to feel much excitement on learning that Ada Lovelace had Dickens read her a passage from Dombey and Son on her deathbed.

But several other personal connections – reflected in an impressive display of books, autographs and prints – carry more weight. Dickens was also pals with Jane Marcet, author of the monstrously successful (and in the US, even more monstrously plagiarised) Conversations on Chemistry. A book mostly about Humphry Davy’s work, Conversations may be considered the first popular science book – never mind the first written by a woman. It inspired Michael Faraday to take up work that eventually led to his Christmas lectures, entitled The Chemical History of a Candle, which Dickens promptly serialised as short stories in his magazine Household Words.

Other investigations of energy were less orthodox, like Dickens’s discussion of the medical cures that might be obtained from “mesmeric fluids”. And it drove Dickens’s friend George Henry Lewes spare that the man responsible for serious scientific essays in Household Words was the same man who let characters in his novels burst spontaneously into flame, as with the illiterate rag-and-bone man Krook (who holds the key to the legal battle at the heart of Bleak House).

Writing about that notorious spontaneous human combustion scene, Lewes accused Dickens of cheap sensationalism and “of giving currency to a vulgar error”, perpetuating it “in spite of the labours of a thousand philosophers”. But he was on a losing wicket: contemporaries Mark Twain, Herman Melville and Washington Irving all had characters incandesce.

It is not accuracy we expect of Dickens, though, it is vision. It may be interesting that Our Mutual Friend uses the word “energy” in its new scientific sense. But what really thrills the heart is to follow Krook’s visitors up the stairs as they are about to find his body.

“‘See here, on my arm! See again, on the table here! Confound the stuff, it won’t blow off – smears like black fat!’… A thick, yellow liquor defiles them… A stagnant, sickening oil with some natural repulsion in it that makes them both shudder…”

Come and be horrified.

Pushing the boundaries

Rounding up some cosmological pop-sci for New Scientist, 24 March 2018

IN 1872, the physicist Ludwig Boltzmann developed a theory of gases that confirmed the second law of thermodynamics, more or less proved the existence of atoms and established the asymmetry of time. He went on to describe temperature, and how it governed chemical change. Yet in 1906, this extraordinary man killed himself.

Boltzmann is the kindly if gloomy spirit hovering over Peter Atkins’s new book, Conjuring the Universe: The origins of the laws of nature. It is a cheerful, often self-deprecating account of how most physical laws can be unpacked from virtually nothing, and how some constants (the peculiarly precise and finite speed of light, for example) are not nearly as arbitrary as they sound.

Atkins dreams of a final theory of everything to explain a more-or-less clockwork universe. But rather than wave his hands about, he prefers to clarify what can be clarified, clear his readers’ minds of any pre-existing muddles or misinterpretations, and leave them, 168 succinct pages later, with a rather charming image of him tearing his hair out over the fact that the universe did not, after all, pop out of nothing.

It is thanks to Atkins that the ideas Boltzmann pioneered, at least in essence, can be grasped by us poor schlubs. Popular science writing has always been vital to science’s development. We ignore it at our peril and we owe it to ourselves and to those chipping away at the coalface of research to hold popular accounts of their work to the highest standards.

Enter Brian Clegg. He is such a prolific writer of popular science, it is easy to forget how good he is. Icon Books is keeping him busy writing short, sweet accounts for its Hot Science series. The latest, by Clegg, is Gravitational Waves: How Einstein’s spacetime ripples reveal the secrets of the universe.

Clegg delivers an impressive double punch: he transforms a frustrating, century-long tale of disappointment into a gripping human drama, affording us a vivid glimpse into the uncanny, depersonalised and sometimes downright demoralising operations of big science. And readers still come away wishing they were physicists.

Less polished, and at times uncomfortably unctuous, Catching Stardust: Comets, asteroids and the birth of the solar system is nevertheless a promising debut from space scientist and commentator Natalie Starkey. Her description of how, from the most indirect evidence, a coherent history of our solar system was assembled, is astonishing, as are the details of the mind-bogglingly complex Rosetta mission to rendezvous with comet 67P/Churyumov-Gerasimenko – a mission in which she was directly involved.

It is possible to live one’s whole life within the realms of science and discovery. Plenty of us do. So it is always disconcerting to be reminded that longer-lasting civilisations than ours have done very well without science or formal logic, even. And who are we to say they afforded less happiness and fulfilment than our own?

Nor can we tut-tut at the way ignorant people today ride science’s coat-tails – not now antibiotics are failing and the sixth extinction is chewing its way through the food chain.

Physicists, especially, find such thinking well-nigh unbearable, and Alan Lightman speaks for them in his memoir Searching for Stars on an Island in Maine. He wants science to rule the physical realm and spirituality to rule “everything else”. Lightman is an elegant, sensitive writer, and he has written a delightful book about one man’s attempt to hold the world in his head.

But he is wrong. Human culture is so rich, diverse, engaging and significant, it is more than possible for people who don’t give a fig for science or even rational thinking to live lives that are meaningful to themselves and valuable to the rest of us.

“Consilience” was biologist E.O. Wilson’s word for the much-longed-for marriage of human enquiry. Lightman’s inadvertent achievement is to show that the task is more than just difficult, it is absurd.

Maths into English

One to Nine by Andrew Hodges and The Tiger that Isn’t by Michael Blastland and Andrew Dilnot
reviewed for the Telegraph, 22 September 2007

Twenty-four years have passed since Andrew Hodges published his biography of the mathematician Alan Turing. Hodges, a long-term member of the Mathematical Physics Research Group at Oxford, has spent the years since exploring the “twistor geometry” developed by Roger Penrose, writing music and dabbling with self-promotion.

Follow the link to One to Nine’s web page, and you will soon be stumbling over the furniture of Hodges’s other lives: his music, his sexuality, his ambitions for his self?published novel – the usual spillage. He must be immune to bathos, or blind to it. But why should he care what other people think? He knows full well that, once put in the right order, these base metals will be transformed.

“Writing,” says Hodges, “is the business of turning multi?dimensional facts and ideas into a one?dimensional string of symbols.”

One to Nine – ostensibly a simple snapshot of the mathematical world – is a virtuoso stream of consciousness containing everything important there is to say about numbers (and Vaughan Williams, and climate change, and the Pet Shop Boys) in just over 300 pages. It contains multitudes. It is cogent, charming and deeply personal, all at once.

“Dense” does not begin to describe it. There is extraordinary concision at work. Hodges covers colour space and colour perception in two or three pages. The exponential constant e requires four pages. These examples come from the extreme shallow end of the mathematical pool: there are depths here not everyone will fathom. But this is the point: One to Nine makes the unfathomable enticing and gives the reader tremendous motivation to explore further.

This is a consciously old-fashioned conceit. One to Nine is modelled on Constance Reid’s 1956 classic, From Zero to Infinity. Like Reid’s, each of Hodges’s chapters explores the ideas associated with a given number. Mathematicians are quiet iconoclasts, so this is work that each generation must do for itself.

When Hodges considers his own contributions (in particular, to the mathematics underpinning physical reality), the skin tightens over the skull: “The scientific record of the past century suggests that this chapter will soon look like faded pages from Eddington,” he writes. (Towards the end of his life, Sir Arthur Eddington, who died in 1944, assayed a “theory of everything”. Experimental evidence ran counter to his work, which today generates only intermittent interest.)

But then, mathematics “does not have much to do with optimising personal profit or pleasure as commonly understood”.

The mordant register of his prose serves Hodges as well as it served Turing all those years ago. Like Turing: the Enigma, One to Nine proceeds, by subtle indirection, to express a man through his numbers.

If you think organisations, economies or nations would be more suited to mathematical description, think again. Michael Blastland and Andrew Dilnot’s The Tiger that Isn’t contains this description of the International Passenger Survey, the organisation responsible for producing many of our immigration figures:

The ferry heaves into its journey and, equipped with their passenger vignettes, the survey team members also set off, like Attenboroughs in the undergrowth, to track down their prey, and hope they all speak English. And so the tides of people swilling about the world?… are captured for the record if they travel by sea, when skulking by slot machines, half?way through a croissant, or off to the ladies’ loo.

Their point is this: in the real world, counting is back-breaking labour. Those who sieve the world for numbers – surveyors, clinicians, statisticians and the rest – are engaged in difficult work, and the authors think it nothing short of criminal the way the rest of us misinterpret, misuse or simply ignore their hard-won results. This is a very angry and very funny book.

The authors have worked together before, on the series More or Less – BBC Radio 4’s antidote to the sort of bad mathematics that mars personal decision-making, political debate, most press releases, and not a few items from the corporation’s own news schedule.

Confusion between correlation and cause, wild errors in the estimation of risk, the misuse of averages: Blastland and Dilnot round up and dispatch whole categories of woolly thinking.

They have a positive agenda. A handful of very obvious mathematical ideas – ideas they claim (with a certain insouciance) are entirely intuitive – are all we need to wield the numbers for ourselves; with them, we will be better informed, and will make more realistic decisions.

This is one of those maths books that claims to be self?help, and on the evidence presented here, we are in dire need of it. A late chapter contains the results of a general knowledge quiz given to senior civil servants in 2005.

The questions were simple enough. Among them: what share of UK income tax is paid by the top one per cent of earners? For the record, in 2005 it was 21 per cent. Our policy?makers didn’t have a clue.

“The deepest pitfall with numbers owes nothing to the numbers themselves and much to the slack way they are treated, with carelessness all the way to contempt.”

This jolly airport read will not change all that. But it should stir things up a bit.